DIAHONDS

Page : 10f80

)) . Version: 1.0
Final Security Testing Tools Date - 22.05.2013
Deliverable ID: D5.WP3 Status : Final
Confid : Public

DIAMONDS

Final Security Testing Tools

Version: 1.0
Date : 22.05.2013
Pages : 80

Editor: Matti Mantere

Reviewers: Fredrik Seehusen, Boutheina Chetali,
Stephane Maag

To: DIAMONDS

The DIAMONDS Consortium consists of:

Codenomicon, Conformiqg, Dornier Consulting, Ericsson, Fraunhofer FOKUS, FSCOM, Gemalto, Get IT, Giesecke

& Devrient, Grenoble INP, itrust, Metso,

Montimage, Norse Solutions, SINTEF, Smartesting, Secure Business

Applications, Testing Technologies, Thales, TU Graz, University Oulu, VTT

Status:

[] Draft

[] To be reviewed
[] Proposal

[X] Final/Released

Confidentiality:

[X] Public Intended for publicuse
[] Restricted Intended for DIAMONDS consortium only
[] Confidential Intended for individual partner only

© Copyright DIAMONDS Consortium

Page : 20f80

Version: 1.0

Final Security Testing Tools Date : 22.05.2013

= — Deliverable ID: D5.WP3 Fi
DIAMONDS e Confid . PUblc

Deliverable ID: D5.WP3
Title:
Final Security Testing Tools

Summary / Contents:
This document describes the final security testing tools in DIAMONDS project.

Contributors to the document:

Matti Mantere (VTT), Sanjay Rawat (Grenoble INP), Fabien Duchéne (Grenoble INP), Jean-Luc
Richier (Grenoble INP), Julien Botella (SMT), Bruno Legeard (SMT), Pramila Mouttappa (IT) Wissam
Mallouli (Montimage), Edgardo Montes de Oca (Montimage), Stephan Pietsch (Testing Technologies),
Bogdan Stanca-Kaposta (Testing Technologies), Kati Kittila (Codenomicon), Ari Takanen
(Codenomicon), Jirgen Grolimann, Martin Schneider, Michael Berger (Fraunhofer FOKUS)

© Copyright DIAMONDS Consortium

© Copyright DIAMONDS Consortium

Page : 30f80

Version: 1.0
Date : 22.05.2013

=SS — Deliverable ID: D5.WP3 Fi
DIAMONDS e Confid . PUblc

TABLE OF CONTENTS

Final Security Testing Tools

I F o} (o Yo LU T3 o o TP 8
2. DIAMONDS SecuUrity TeStNG t00]S .uuiiuiiiiii e e e e e e e 9
2.1 Data Fuzzing Library (FRG FOKUS) ..o et e e e e e e e e e 9
2.1.1 DeSCription Of the TOO i e e e e ees 9
2.1.2 APPlICation 10 CaSE STUAIEScvuiiieiiie e e e e e e e e e 13
2.1.3 Advances during DIAMONDS ..ot e e e e e e eans 14
2.2 Model-based behavioral security testing tool development (Smartesting)..........ccoocevvvvviiiiiiieinnn. 17
2.2.1 DeSCription Of the TOOI.......ieii e e e e e e e e e enns 17
2.2.2 APPlICAtioN 10 CASE STUTIESvvniiieiiie e e e e e e 17
2.2.3 Advances during DIAMONDS ... e e e e et e et e e e e aeenns 18
2.3 FRAMEwork for active security testing (FSCOM)ccuiiiiiiie e e e e 24
2.3.1 DeSCription Of the TOOI.......cieii e e e e e e r e e enas 24
2.3.2 APPICALION 10 CASE STUIESietiiiii ettt et e e 27
2.3.3 Advances during DIAMONDS ...ttt e e e et e et e e e et e e e eab e eees 29
2.4 Static and Dynamic Application Analysis for Vulnerability Detectionccoovevviiiiiiiiiincinnenn, 31
24.1 Description Of the TOO.......c.u e 31
2.4.2 APPHCALION 10 CASE STUIESieiiiiii ettt e r e 40
2.4.3 Advances during DIAMONDS ..o ettt et 40
2.5 CodenomiCON DEFENSICSuiiniiiiiii e e e et e e 41
2.5.1 Description OF the TOOI..... ... e 41
2.5.2 APPHCAtION 0 CASE STUIESieiiiieieit ettt et r e 45
2.5.3 Advances during DIAMONDS ... et et et e e e e eans 46
2.6 Symbolic Passive Testing TOOl (TESISYM-P) (IT) ..eeuiiuiieiiia e a7
2.6.1 Description Of the TOOL e e eans a7
2.6.2 APPLICAtioN 10 CASE STUAIES ... ovuiiieii e e e e e e e e ans 51
2.6.3 Advances during DIAMONDSo e e e e e e e e e eans 51
2.7 Montimage Monitoring TOOl (MONtIMAGE)ccuiiiriiiii e e e e e e 52
2.7.1 DeSCriptioN OF the TOOo e e e e eans 52
2.7.2 PN o] o] [or- 1 o] g T (o I OF= Ty =T AU o [T 53
2.7.3 Advances during DIAMONDS ..o e e e e e e e eans 54

P S T Y/ = 1AV Y o (1 013 o 55
2.8.1 DesCription Of the TOO.......cieii e e e e e e eaas 55
2.8.2 PN o] o] [or- 1 o] T (o I OF= T =T} AU o [T P 59
2.8.3 Advances during DIAMONDSouiiiiiiii e e e e et e e e eans 59
P22 T I {13 (G =] €= (1 (0) 60
2.9.1 DeSCription Of the TOOI.......cieii e e e e e e e eaas 60
2.9.2 APPlICAtioN 10 CASE STUAIES ... ovuiiieiiie e e e e e e e e e et e e e eans 64
2.9.3 Advances during DIAMONDS ..o ettt 64
2.10 TTCON-3 FUZZ TESTING ettt ettt ettt e e et e e e e e e e enes 65
2.10.1 DesScCription OFf the TOOI........iiiiiiiie et e 65
2.10.2 Application t0 CASE STUIESccuuiiiiiieiiee et e e e r e 67
2.10.3 Advances during DIAMONDScoouiiiiii e ettt e e 67
O Ll C=To = UaTeT g T o] K= N4 (o] 4 H PP PPT 68
3.1 Tools integration for SECUMtY TESTINGivruierieiie et e e e eees 68
3.1.1 Integration into the Radio Protocol Frameworkoviiuiiiiiiii e 68
3.1.2 TOOIS INEEGIALION: ... ettt ettt ettt ettt e e et et e e et e et e e 68
3.2 Trace Management Platform for Risk-based Security Testing (FhG FOKUS)cccoviviiiiiinnnn. 69
3.21 Description OF the TOOI..... ... e 70
3.2.2 APPLICAtioN 10 CASE STUAIEScvuiiieiiie e e e e e e e et e e e e ans 73
3.2.3 Advances during DIAMONDS ..ot e e e e e eans 74
I o] o od LT R o o PPN 78

© Copyright DIAMONDS Consortium

Page : 40f80

Version: 1.0

Final Security Testing Tools Date : 22.05.2013

=SS — Deliverable ID: D5.WP3 Fi
DIAMONDS e Confid . PUblc

) (=T (=T o1 PP UPPRUPTN 79
FIGURES
Figure 1: Excerpt from an XML ReQUESE File..........iiiriiii e 12
Figure 2: Excerpt from an XML RESPONSE Fil@ ... 12
Figure 3: Internal Architecture of the Data FUzZzing LibDrary ... 15
Figure 4: The Class ComputablelList and its Relationshipscoooeiiiiiiiiiiii e 16
Figure 5: Smartesting process and tool for model-based security teStingccooviiiiiiiiiiiiis 17
Figure 6: Smartesting process applied on the Thales case StUdYco.iieiiiiiiiiiiii e 18
Figure 7: Smartesting process applied on the Gemalto TSM case Studyccoeviiiiiiiiiiiiii e 18
Figure 8: Smartesting Test Purpose and Keywords €ditOrSoiuiiiiiiiiiiiie e e 20
Figure 9: Smartesting test model import from TSM StateChart pluginccooiiiiiiiiiiii e, 21

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:

Smartesting test model import from TSM StateChart importerccoovviiiieii e, 21
UML/OCL model parts generated from a TSM StateChart............ccoooeiiiiiiiiii i 22
Generated test sequence from TSM StateChart imported modelcoooiiiiiiiiiii i, 22
GemMaAlto TSM INLEITACESt et e e et et e e e eaes 24
Security test SYStEM arChItECTUIEove e e s 26
Generic abstract ProtOCOl tESTENv.iiiiii e e e e e 26
Execution of the testing framework SCreenShot............oooiiiiii e 28
Malicious attack which set the HTTP tag Content-Length to 65535..........ccccoeiiiiiiiiiiiieiiceens 29
LISTT @rCRILECIUI® ...t ettt e e e e e e ean e 31
Generating Arg/Var information from IDA PrO.......c.uiiieiiiiii e e e e 32
IMporting .IDB fil@ INtO BINNAVIciuiiiiii i e e e e e e e eeens 33
SHCE ClaSS 1N LIS T T oottt ettt et e et e e et et e et e eaa e enes 33
Various classes that represent dataflow analysis in LISTTccoooiiiiiiiiiiiii e 34
A taint flow slice as computed by LISTT. TScr=j_fgets; TDst=j_Strcat..........cccooeeiivirrernneennnens 35
KameleonFuzz TOOl ArCHILECTUIEt e e e e e e e e anas 36
KameleonFuzz: High Level APProach FIOWooouiiiiiiii e 36
Extract of the Inferred Model for POWNMEooniiiii e e 37

Figure 27: Example of Reflection Annotation (this is an extract of the pOwn model, with only transitions
related t0 the reflECTION) i ettt 38

Figure 28:
Figure 29:
Figure 30:
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43.
Figure 44:

GENELIC AIGOTENM oo ettt et et e 39
Extract of the AttaCk GramMar e e eanes 39
extract of the found XSS eXPloit SUMMEAIYt e 39
Specification-based apPrOACH e e 41
B e or- Yol o [T =T = L1 o] o FA P 42
Test target INfOrMaAtiONui e e e e e e 42
SteP 1. LOAO PCAP filE . et 43
Step 2. Select ProtoCOl BIEMENLS e e 43
Model-editing IN DEfENSICSiui it e e e e e 45
Architecture of TestSym-P prototype model.ccooiiiiiiiiii e 47
Snapshot of trace parsing (dbo. InputTOEXcel) table.cooiiiiiii e 48
Snapshot of the trace slicing (dbo.slices) table. ..o 49
Snapshot of the Verdicts ObtaINEd.iinii e 49
Snapshot of the guard-conditions table. ... 50
Snapshot of the Symbolic state details table.cooiiiiii 50
MM T-SECUILY AICIILECTUIE ... ieeie e e e et e e e e e et e e et e et e eaeennas 52
MAIWASIN FEALUTES ... ettt e et e e e e e e e e e et e et e e ean e e e et eenaeannas 56

© Copyright DIAMONDS Consortium

Page : 50f80

Version: 1.0
Date : 22.05.2013

=SS — Deliverable ID: D5.WP3 Fi
DIAMONDS e Confid . PUblc

Final Security Testing Tools

Figure 45: Malwasm Wb -iNtEITaCEcoi i et et 57
Figure 46: MalWwasm arChitECIUIEou et e e e e e e e e e e e e e e et e et e et e e e eanaaannas 58
Figure 47: Tools integration (t00IS PrOVIAEr MEW)ccuuiieiii it e e e e e e e ans 68
Figure 48: Traceability from risk assessment artefacts to test resultsccoviiiiiiii i 69
Figure 49: Vulnerability COVErage DY tESt CASEScuuuiii i e aes 71
Figure 50: Trace Management Framework in Multi-Layer Diagramccoovieieiiiiiieieei e eine e 71
Figure 51 : Example of the Option Create Trace with the Trace Management TOO!ccoeviiiiieiinennnns 73
Figure 52: Traceability Management embedded in Eclipse (based on CReMa)ccoeveveiiiiiiiiiiiiineiiiennnns 75
Figure 53: Different Domains in Context of Risk-based Security TeStiNGcocvviiiiiiiiiiiiiies 75
Figure 54: An Example of a Trace Metamodel in Context of Risk-based Security Testingccoeeeevnnees 76
Figure 55: Query Interaction between all Query-related COMPONENESviiviiiiiiiiiiieiie e 77
TABLES
Table 1: Chosen Fuzzing Heuristics from Selected FUZZEISccovviiiiiiiiiiie e, 10

© Copyright DIAMONDS Consortium

DIAHONDS

Final Security Testing Tools

Deliverable ID: D5.WP3

Page : 60f80

Version: 1.0
Date : 22.05.2013

Status : Final
Confid : Public

HISTORY
Vers. Date Author Description
0.1 2013/3/13 M. Mantere Document creation
0.5 2013/5/8 M. Mantere Refactoring the document
0.99 2013/5/22 M. Mantere Edited based on reviews
APPLICABLE DOCUMENT LIST
Ref. Title, author, source, date, status DIAMONDS ID

© Copyright DIAMONDS Consortium

Page : 70f80

Version: 1.0
Date : 22.05.2013

Deliverable ID: D5.WP3 Status : Final

@\DI@M @m\@/g Confid : Public

EXECUTIVE SUMMARY

Final Security Testing Tools

The DIAMONDS project focuses on model-based security testing of networked systems. Testing is the main
method to reliably check that a software-based system meets its requirements with regard to functionality,
security and performance. In this document we present the final state of security testing tools touched during
DIAMONDS. The tools have been either fully developed during the project or their functionality enhanced.

Model-based Testing is the approach of deriving systematic tests for a system based on an abstract
representation thereof called models. These models may describe the behaviour of the system, security
constraints (for example access control), the security requirements, or information about possible security
threats, faults or attacks. The state of the art in model-based testing tools was given in D1.WP3 [6] and the
initial report on testing tools in D3.WP3. In this document D5.WP3 we describe the final model-based
security testing tools by the different project partners. This document can be considered a final progress
report of each partner developing its testing tool.

© Copyright DIAMONDS Consortium

Page : 80f80

Version: 1.0
Date : 22.05.2013

Deliverable ID: D5.WP3 Status : Final

@\DI@M @Mﬁj@ Confid : Public

1. INTRODUCTION

Final Security Testing Tools

The document comprises of the testing tools that have been created or further deweloped during the
DIAMONDS project. The section 2 comprises of individual tool descriptions, while section 3 gives an
ovenview of the integration platforms.

This document is the final deliverable for work package 3 in the project.

© Copyright DIAMONDS Consortium

Page : 90f80

Version: 1.0
Date : 22.05.2013

= — Deliverable ID: D5.WP3 Fi
DIAMONDS e Confid . PUblc

2. DIAMONDS SECURITY TESTING TOOLS
2.1 DATA FUZZING LIBRARY (FHG FOKUS)

Final Security Testing Tools

2.1.1 Description of the Tool

Today, data fuzzing is a widely accepted and performed technique for security testing. There are many
different fuzzers available, some are commercial, many are open-source. The main difference between the
commercial and the open source fuzzers is that the latters are often developed for a specific protocol, while
the commercial fuzzers address a large number of different protocols. Hence, for testing different systems,
seweral fuzzing tools are needed when considering open source tools. Additionally, Charles Miller came to
the conclusion that the more fuzzers are used the better ([22], [24] p. 242) in order to find the most
weaknesses. Following that, for performing fuzz testing a lot of fuzzing tools should be used. Furthermore,
each tool has to be configured for the specific SUT requiring the tester to become acquainted with each tool.
The presented data fuzzing library solves this problem. It combines the core of sewveral open source fuzzing
tools — their test data generators — and makes them available for other tools over a single interface. Test
data generators, that are fuzzing heuristics, consist of fuzzing generators and fuzzing operators. Fuzzing
generators are producing values from a specification while fuzzing operators are modifying valid values.

2.1.1.1 Existing Open Source Fuzzing Tools

Because of the huge number of tools (see [23] for a list of tools available in 2005), a study of open source
fuzzing tools was conducted. The study investigated fuzzing tools w.r.t the following aspects:
e target of fuzzing attacks: This could be a specific protocol, e.g. SOAP, or for instance Java classes
or regular expressions.
e last source code update: This information is used to estimate whether the fuzzer is further
developed.
e category of fuzzer: Random-based, block-based, generation- or mutation-based.
e existence of a library interface: If the fuzzer can be used as a library through an interface, its
integration would be easier.
e fuzzing heuristics: What kind of fuzzing heuristics are implemented. That is the most interesting
part because the fuzzing heuristics constitute the functional core of the library.
e license: Does the license of the fuzzer allow an integration within the planned library.

After evaluating ten open source fuzzing tools, three were selected for the initial implementation of the
fuzzing library:

e Peach is an open source smart fuzzer that is under active dewelopment since 2006 and also
commercially offered by Déja w Security. It can perform generation and mutation-based fuzz testing
employing a data model and a state model. It has a rich set of generators and operators, e.g. for
Unicode string, hostnames, variation and extreme numbers, i.e. going to the edge of an interval.

e Sulley is a block-based fuzzer for generation and mutation-based fuzzing. It is under development
since 2008, and like Peach, it also has various fuzzing generators and operators. Additionally, Sulley
uses many fuzz testing values from SPIKE, a generation-based fuzzing framework.

First, the data fuzzing library provides a uniform interface to access the fuzzing heuristics of the abowe
mentioned tools. This interface and the library itself is open for further extensions. The chosen fuzzing
heuristics are shown in Table 1.

Fuzzing Heuristic Peach | Sulley
Strings

BadDate G
BadlpAddress G

© Copyright DIAMONDS Consortium

Page : 10of 80

Version: 1.0

Final Security Testing Tools Date : 22.05.2013

= — Deliverable ID: D5.WP3 Fi
DIAMONDS e Confid . PUblc

Fuzzing Heuristic Peach | Sulley
BadNumbers G

BadTime G
Command Injection G
Delimiter G
FilenameMutator G
FiniteRandomNumbersM utator G

Format String G
HostnameMutator G
LongString G
PathMutator G

SQL Injection G
String Repetition O
StringCaseMutator (@]
StringMutator G
UnicodeBadUtf8Mutator G
UnicodeBomMutator G
UnicodeStringsMutator G
UnicodeUtf8Three CharM utator G

Numbers

Numerical Edge Case Mutator G G
Numerical Variance Mutator ©)

Table 1: Chosen Fuzzing Heuristics from Selected Fuzzers

2.1.1.2 Use Cases

Two main use cases for the fuzzing library were identified:

Using fuzz testing in SUT specific test execution environments. Most fuzzing tools integrate the
definition of the data format, the test execution and test verdict arbitration. This requires the tester a)
to connect the fuzzing tool to the SUT, which could mean a significant effort, especially for
embedded systems, and b) to get familiar with the syntax of the data and to specify its format for
each fuzzing tool.

The data fuzzing library faces these drawbacks by providing a unified interface for accessing fuzzed
values without losing the power of fuzzing heuristics from different fuzzing tools. The test execution
environment can request fuzzed values from the library and sent them to the system under test using
its specific connection to the interfaces of the SUT.

Extending test tools with fuzz testing capabilities. Fuzz testing is one test method beside others.
Other test methods are already supported by test tools implemented in an existing test process. To
integrate fuzz testing into an existing test process can lead to substantial effort because new tools
have to be adapted and fitted to the whole test process. The fuzzing library enables to extend
existing test tools with fuzz testing capabilities acting as a library from which existing tools can
request fuzz testing values.

2.1.1.3 Requirements
In order to make a fuzzing library widely adoptable, the following requirements were figured out:

© Copyright DIAMONDS Consortium

Page : 110f 80

Version: 1.0
Date : 22.05.2013

= — Deliverable ID: D5.WP3 Fi
DIAMONDS e Confid . PUblc

e platform independence: The library shall be available on many different platforms. At best on as
many platforms as are used for existing test tools and test execution environments.

Final Security Testing Tools

e independent from programming languages: As for platforms, the library shall be accessible from
as many programming languages as possible. Hence, the library should not use a language specific
interface but should be open for many programming language.

e largely independent of type representation: It should be possible to describe and fuzz a wide
range of different data types without the limitation of the programming languages used for
implementing the library.

o efficient to use: The user shall have the possibility to specify which fuzzing heuristics shall be used.
This allows adjusting the library to fit specific requirements, e.g. only generate fuzz testing values
based on Unicode. Because fuzzing generates a large set of values, the user must hawe the
possibility to request a certain number of fuzz testing values.

e transparent: The fuzzing library shall tell its user which fuzzing heuristics were used, so more
values only from a certain fuzzing heuristic can be requested. This is useful if a fuzz testing value
generated by a certain fuzzing heuristic revealed a weakness in the system under test.

e repeatability: Fuzz testing is often a random-driven approach meaning that values are generated in
partial randomly. The library shall support the repeatability of such randomly generated values, e.g.
for regression testing.

e extensibility: Time is going further, and new fuzzing tools with new fuzzing heuristics will come. The
library shall be extensible to meet these upcoming dewelopments.

2.1.1.4 Interfaces Provided by the Library

The requirement of language independency has a big impact on the interface provided by the library. It must
be accessible from different programming languages. Additionally, the interface must be able to handle many
different representation formats. Hence, XML seems to be an appropriate choice for accessing the library
and receiving its output.

In order to receive fuzzed values from the fuzzing library, a request must be submitted to the library. Such a
request contains the relevant information of a type that shall be fuzzed, e.g. valid lengths and null termination
for a string, as shown in Figure 1. Additional information are the number of values to be retrieved (attribute
maxValues) as well as a name acting as a user-defined identifier (attribute name) that can be used for
referring this type.

The following types are supported:
e Strings: Different kinds of strings, including filenames, hostnames, SQL query parameters.

e Numbers: Integers and floats, signed or unsigned with different kinds of precisions.

e Collections: Lists and sets. The type of each element is specified by referring one of these four
types (strings, numbers, collections, or data structures) using the value of the name attribute.

e Data structures: Enables the specification of records with several fields where the type of each field

is specified by referring one of these four types (strings, numbers, collections, or data structures)
using the value of the name attribute.

© Copyright DIAMONDS Consortium

Page : 120of 80

Version: 1.0
Date : 22.05.2013

= — Deliverable ID: D5.WP3 Fi
DIAMONDS e Confid . PUblc

Final Security Testing Tools

<string name="SimpleStringRequest"” maxValues="10">
<specification type="String" minLength="1" maxLength="5" nullTerminated="true"
encoding="UTF8" />
<generator>BadStrings</generator>

<validValues>
<value>ABC</value>

<operator>StringCase</operator>

</validValues>
</string>

Figure 1: Excerpt from an XML Request File

Along with the specification of the data type, it is possible to specify which fuzzing heuristics shall be used
and which valid values shall be fuzzed. This is of particular interest if a specific kind of invalid input data is
needed, e.g. based on Unicode strings. This allows it to efficiently use the fuzzing library to get certain
fuzzed values.

The response of the fuzzing library is also an XML file whereof an excerpt is shown in Figure 2. The
response contains the fuzzed values according to the basic request type (in this case string) given by the
request. Moreover, there are two new attributes for the tag string. moreValues denotes if further values
than the enclosed can be retrieved from the library. Finally, id stands for a UUID that is necessary to retrieve
further values after receiving the first response from the library.

The fuzzed values are complemented by information how the fuzzed values were generated by the library.
They are grouped by the employed fuzzing generators — for fuzzed values that are generated along the type
specification. Moreower, the employed fuzzing operators, and the valid values they were applied to. This
makes the generation of fuzzed values transparent to the user of the library, and further request of the
fuzzed values generated by specific fuzzing operators if a previous value revealed some abnormal behaviour
of the SUT.

<string name="SimpleStringRequest" id="ca53abee-0719-43da-a70d-96d61931fbo8"
moreValues="true" >
<generatorBased>
<generator name="BadStrings">
<fuzzedValue>+]s}9%$# *Y</fuzzedValue>
<fuzzedValue>0$2)v3D*U1 {X7x,Us\\</fuzzedvalue>

</generator>

</generatorBased>
<operatorBased>
<operator name="StringCaseOperator" basedOn="ABC">
<fuzzedValue>abc</fuzzedValue>
<fuzzedValue>aBc</fuzzedValue>

</operator>

</operatorBased>
</string>

Figure 2: Excerpt from an XML Response File

© Copyright DIAMONDS Consortium

Page : 130f 80

Version: 1.0
Date : 22.05.2013

= — Deliverable ID: D5.WP3 Fi
DIAMONDS e Confid . PUblc

The format of the request file as well as the format of the library’s response file is specified using an XML
schema. The parser and serializer for the XML are generated from those XML schemata using the Eclipse
Modelling Framework (EMF).

Final Security Testing Tools

2.1.2 Application to Case Studies

The presented fuzzing library was applied in the German case studies: the Automotive case study provided
by Dornier Consulting, and the Banking case study provided by Giesecke & Dewient.

2.1.2.1 Automotive Case Study

The Automotive case study was provided by Dornier Consulting. It consists of the connection of the car’s
entertainment system with the driver's mobile phone via Bluetooth. Connections via Bluetooth are open to
foreign devices and thus, provide an attack point. In order to check the robustness of the Bluetooth interface,
fuzzing is an appropriated testing technique. However, the goals of testing the interface is whether an attack
via the Bluetooth interface has an impact on the automotive devices connected to the Bluetooth module
within the car. The Bluetooth module and the car's entertainment system communicate between the CAN
bus using messages. These messages are specific for each car manufacturer. Therefore, using different
tools for different kinds of tests, e.g. functional and security tests, constitutes a significant effort that impedes
using fuzzing tools. The fuzzing library helps to reduce this effort by allowing to perform fuzzing with existing
functional testing tools. For that purpose, it was integrated in Domier Consulting’s do.Atoms model -based
testing tool and provide the fuzz test data. do.Atoms accesses these fuzz test data via the library’s interface
in order to retrieve invalid host names for Bluetooth devices that are trying to connect to the car's
entertainment system.

The case study addresses both use cases of the fuzzing library, the extension of an existing test tool for
performing security testing using fuzzing, and by allowing fuzzing for a SUT with a specific interface, in this
case Bluetooth and the CAN bus for test verdict arbitration. Full fuzz testing tools needed to be extended in
order to decode the CAN message for test verdict arbitration as well as for accessing the Bluetooth interface.
The fuzzing library allows for awoiding these effort by the much easier integration of the library with the
existing test tool.

2.1.2.2 Banking Case Study

The Banking case study was provided by Giesecke & Dewient. It is a banknote processing system
consisting of two machines: a currency processor that is automatically scanning and assessing banknotes
and a reconciliation station for manual reassessment of banknotes that were automatically rejected by the
currency processor. The main focus of the security tests was on the currency processor. We applied data
fuzzing in order to test the robustness of the interface against SQL injection. SQL injection tries to inject SQL
commands va the interface of an application in order to bypass authentication mechanisms or to manipulate
the database of an application.

Testing for SQL injection wlnerabilities requires less effort and can be easily performed by functional testing
tools. The fuzzing library was used to generate such SQL injection strings. Existing functional test cases
written in TTCN-3 were used as a starting point. The fuzzing library was integrated with TestingTech’s test
definition and execution environment TTworkbench. A new TTCN-3 extension for fuzzing developed during
the DIAMONDS project facilitated this task by an easier integration with existing templates. SQL injection
was achieved by requesting corresponding test data from the fuzzing library and saving this data in variables
that were submitted to the SUT where SQL injections seems to be possible. The case study addresses
mainly the second use case by allowing security testing with existing testing tools mainly developed for
functional testing. On the other hand, the SUT was stimulated via a special-purpose interface that is
addressed by the TTCN-3 framework and the test adapter. Thus, the first use case is indirectly addressed by
allowing reusing the test adapter by the existing TTCN-3 framework and functional test for security testing.

© Copyright DIAMONDS Consortium

Page : 140f 80

Version: 1.0
Date : 22.05.2013

= — Deliverable ID: D5.WP3 Fi
DIAMONDS e Confid . PUblc

2.1.3 Advances during DIAMONDS

The fuzzing library was newly deweloped during the DIAMONDS project. In the following, we describe the
architectural decisions that were made in order to meet the requirements. Additionally, we describe how the
fuzzing library could be extended with new fuzzing heuristics.

Final Security Testing Tools

In order to meet the requirement for platform independency, the fuzzing library is developed on top of the
Java Platform. Java is supported on many operating systems and seems to be appropriate to achieve the
goal of availability on various platforms.

To presene platform independence as achieved within Java and to minimize dependencies, the fuzzing
generators and operators taken from the fuzzing tools (see section 2.1.1.1) are reimplemented in Java. This
brings benefits for the performance of the library since no integration of Python code (for Peach and Sulley)
is required. The Java integration layer for Python, Jython [25], typically requires some significant time for
initialization which might hamper the performance of the data fuzzing library. In addition, the realization of the
fuzzing heuristics in pure Java improves the maintainability because only one programming language is used
for the implementation of the whole library. The reimplementation of the fuzzing operators seems also to be
appropriate because the core functionality of a fuzzing operator is generally quite simple and normally the
fuzzing heuristics are hard-wired within the enclosing framework. Additionally, for the Jython integration of
Python code into Java, there is additional overhead because a Java interface must be written for each
Python class, and that Java interface in turn must be referenced in the Python class.

Fuzzing is often a random-driven approach. Fuzzed values are generated under the influence of
randomness without following a certain set of deterministic rules. This impedes regression testing because
ewery time fuzzed values are generated they differ from the previously generated ones. To enable regression
testing, the fuzzing library returns a seed that can be used for later requests in order to retrieve the same
values. Thus, the requirement for repeatability is fulfilled.

2.1.3.1 Architecture

Figure 3 depicts the architecture of the fuzzing. It consists of three layers:

o Interface: The library can be accessed using two interfaces independent from each other. The
language independent way is through XML for creating a request and getting the response. As
described above, XML schemata were defined for determining the syntax of requests and
responses. These schemata were used to generate the proper XML parser for request files and the
proper XML serializer for response files. Howewer, the XML schemata were used to define the
general structure of XML requests on a high level of abstraction, in order to keep the schemata
manageable, and allow the extension of the fuzzing library without the need for changing the XML
schema when adding new fuzzing heuristics. The second way to access the library is by directly
using the Java interfaces thereby saving the time for parsing the XML request and response. For the
direct access via Java there are interfaces for data objects according to the information that can be
submitted via XML requests and responses.

Whichever way was selected by the user to access the library, the information about the requests is
delivered to the request processing layer. After the requests are processed, the interface receives
the results from the request processing layer, creates the XML response (employing the EMF
generated XML serializer) and delivers the response from the library to the user.

e Fuzzing Heuristics: This layer aggregates the various fuzzing generators and operators
reimplemented from the selected fuzzing tools (Peach, Sulley). They are grouped by their types
(string, number, collection, data structure). For each type, there is a separate factory for generators
and operators that creates instances of them according to the specification given by the request.
Thus, only suitable fuzzing heuristics are generating fuzzed values.

© Copyright DIAMONDS Consortium

Page : 150f 80
. . . Version: 1.0
Final Security Testing Tools Date - 22.05.2013
N — Deliverable ID: D5.WP3 Status : Final
@D@M@M@S Confid : Public

e Request Processing: This layer acts as a broker between the interface and the fuzzing heuristics. A
request dispatcher receives a bunch of requests from the interface and passes them to type specific
request processors, e.g. to a string request processor. Each type specific request processor handles
one request by employing the fuzzing heuristics that match the type specification of the request. The
results of the fuzzing heuristics are then returned for building the response to the request. That is,
the request dispatcher collects all responses from the different, type specific request processors, and
gives the aggregation of all responses to the interface layer.

XML Schema for XML Schema for
Requests Responses
Java Interfaces for Java Interfaces for
Requests Responses
EMF generated EMF generated
XML Parser XML Serializer

Request Dispatcher

String Request Processor Number Request Processor

Factory for String Fuzzing Generators Factory for Number Fuzzing Generators

v
2
7]
=
S
]
=

Bad
Hostnames

Numerical
Variances

Numerical

Bad Strings Edge Case

Figure 3: Internal Architecture of the Data Fuzzing Library

Figure 3 depicts the architecture of the fuzzing. It consists of 3 layers:

2.1.3.2 Extending the Library with New Fuzzing Heuristics

As described abowve, there are two kinds of fuzzing heuristics: fuzzing generators that generate fuzzed
values based on a specification, and fuzzing operators that modify existing, generally valid values. Both
kinds of heuristics are supported by the library. Fuzzing generators simply constitute large lists of certain
values that are known to have the capability to expose implementation weaknesses. Because of their size,
they require a lot of memory at runtime. To overcome this memory issue, two strategies are realized: First,
the fuzzed values of the generators are static members of the corresponding classes, in order to awoid
duplication during instantiation of a generator class. Secondly, the values are not used as is but generated at
request time. Mostly, there is an underlying pattern for the fuzzed values, e.g. many values of the generator
Bad String consist of certain characters that are repeated a power of 2 times. Hence, such a value could be
very long. In that context, the memory consumption could be limited by generating the fuzzed value when
requested. This is not only valid for fuzzing generators, but also for operators, whereas the length of the valid
values, fuzzing operators are applied to, is unknown and could be much larger. For that reason, as shown in
Figure 4 an interface called ComputableList is implemented by an abstract class ComputableListImpl
that is derived from the AbstractSequentiallist being part of the Java runtime environment. The abstract
class ComputablelListImpl is the base class of all fuzzing heuristics. Its iterator (ComputingIterator)
does not iterate a list of values but calls the method computeElement(int) in order to obtain a value.

© Copyright DIAMONDS Consortium

DIAHONDS

Page : 16 of 80

)) . Version: 1.0
Final Security Testing Tools Date - 22.05.2013
Deliverable ID: D5.WP3 Status : Final
Confid : Public

Therefore, a value can be calculated when requested awiding generating all values when the fuzzing
generator or operator is instantiated.

java.util
AbstractSeguantialList<E> List<E> ()
. ﬂ
Fas
ComputableList<E>
Computablalistimpl<E> +computeElement(incex : int) E
. . SE—— +istherator() . Computinglterator<E=
+computeElement{ index > int) | E +listherator(index : int) : Computingtterator=E=
+sizel) - int

Figure 4: The Class ComputableList and its Relationships

© Copyright DIAMONDS Consortium

Page : 17 of 80

Version: 1.0
Date : 22.05.2013

. | i bl : . Fi
@D@M@[ﬂ@@ Deliverable ID: D5.WP3 2'[051;:3 : ES;liC

2.2 MODEL-BASED BEHAVIORAL SECURITY TESTING TOOL DEVELOPMENT
(SMARTESTING)

Final Security Testing Tools

2.2.1 Description of the Tool

Model-based security testing from behavioural models and test purposes is an extension of functional model-
based testing (MBT):

e The model for test generation captures the expected behaviour of the system under test (SUT). This
model is dedicated for automated generation of security tests, and generally formalizes the security
functions of the SUT but also the possible stimuli of an attacker as well as the expected answer of
the SUT.

e The test purposes are test selection criteria that define the way to generate tests from the test
generation model.

The main difference with “classical” functional MBT is firstly that the behavioural model may represent
stimulations that are not defined in the specification of the SUT. For example, if a security test engineer
wants to generate SQL injection test, he or she would represent SQL injection operation inside the test
generation model. Secondly, the model-based security testing differs in the way test cases are selected from
the behavioural models. In functional MBT, the way is often based on a structural coverage of the model,
mixing the cowerage of expected behaviour and logical test data. The tests are in general “positive”, aiming
to test all the nominal cases and few (or a seweral) errors cases. In security testing, the goal is really to
systematically trying to break (or to bypass) the security functions of the SUT. This search for breaking
software security barrier requires to systematically trying possible breakers in a large set of application
contexts. The test purpose language goal is to support such test selection criteria.

The Figure 5 presents the Smartesting process and tool for model-based security testing.

Security II
Requirements

Security
Engineer

Security

2

|
. i
Risk . Test
H Y ngineer
R BV Coverage
f h Traceability
\ Security Matrix
\
\ Test Purposes w3
A p S i
* Smartesting
\ SecurityTest
\ A < Generator
\l v : Security
Functional _oo__y _ SecurityTest Test
Requirements Security Generation Model Cases
\ J

Test
Engineer

Figure 5: Smartesting process and tool for model-based security testing

2.2.2 Application to case studies

The Smartesting process and tool for model based testing has been used on different case studies during
the Diamonds project.
Smartesting worked on the following case studies:

e ltrust LASP case study

e SINTEF/NORSE banking application case study

© Copyright DIAMONDS Consortium

Page : 180of 80

Version: 1.0
Date : 22.05.2013

@\Hl/@M@m\@/g Deliverable ID: D5.WP3 ?;?;:3 ES;IiC

e Thales HDRM case study
e Gemalto Trusted Senice Manager (TSM) case study

Final Security Testing Tools

On the ltrust case study, only a first functional model has been created, and the generated tests have been
executed.

After providing to SINTEF training around the Smartesting process, SINTEF used the solution to generate
wilnerability tests around SQL Injection on the NORSE case study.

The more advanced use cases are the Thales and Gemalto use cases, on which the full chain has been
applied. The Figure 6 and Figure 7 show the application of the Smartesting process on those use cases. It
has been first done on the Thales case study, and then replicated on the Gemalto TSM case study.

. a SN J(.F.f'i':S." -..L
. _"“2_| Functional Model
Functional || >[(UMLIOCL) }\ ko Abstract
Requirements \‘ Automated security
Test Tests
Generation
]
Security | =] Security Test l
Requirements | - Purposes [traj files J

L

0% -

- Simulat
montimage uieter
maonitoring e tool

Figure 6: Smartesting process applied on the Thales case study
SN Jrs.r'I:s! -..L
Functional I_’"’_— _> Functional Model =
requirements + 3 (UML/OCL) Abstract
TSM StateChart_ |- (") \‘ Automated security
[l
Test Tests
Generation
2 - i
Security —,| Security Test
Requirements | Purposes Adaptation
Layer
\
Automated
Test

. Execution
montimage
monitoring (™ tgol {Belenium)

Figure 7: Smartesting process applied on the Gemalto TSM case study

2.2.3 Advances during DIAMONDS

In this section, the key aspects of the Smartesting prototype improvements developed within DIAMONDS for
Security Oriented Test Generation are presented. For illustration purpose, we take examples from both

© Copyright DIAMONDS Consortium

Page : 19 of 80

Version: 1.0
Date : 22.05.2013

= — Deliverable ID: D5.WP3 Fi
DIAMONDS e Confid . PUblc

DIAMONDS case studies (Thales HDRM Waweform radio protocols and Gemalto TSM). These elements
complete the first presentation done in the D3.WP3 and D4.WP3 deliverables and focus on the
improvements done in regards of the first version of the prototype.

Final Security Testing Tools

We will first present the “keyword editor” added to the Test Purpose editor for usage simplification and reuse
purpose, then we will see an addition to the language to increase its expressiveness, and finally a more
Gemalto TSM use case specific plugin to generate UML/OCL model parts from specific SUT configuration
files.

2.2.3.1 Test Purpose keywords editor

The Test Purpose expresses a « pattern » (incomplete scenario) that the tests will have to cower, in respect
to the functional model. It allows using the test generation model artefacts to express chains of specific
states of the System Under Test (SUT) and specific behaviours of the SUT.

Those model artefacts, such as enumeration literals, operations, annotations, and even OCL parts of code,
are representing different behaviours or states of the modelled SUT. These concepts, during the test
purpose definition, can make it difficult for the security tester to express the tests objectives he wants to
cover.

For instance, on the Thales HCDR waweform case study, concerning ad-hoc radio protocols, we would like
to express a test objective where different stations reach a specific configuration, and then we want to trigger
3 kinds of attacks. The corresponding test purpose would be:

for_each operation $ATT from attackl or attack?2 or attack 3,

use move any number_of times to_reach ‘self.utilities.areNeighbours(ADDRESSES::ADDRESS 1,
ADDRESSES::ADDRESS_2) and

self.utilities.areNeighbours(ADDRESSES::ADDRESS_1, ADDRESSES::ADDRESS_3) and
self.utilities.areNeighbours(ADDRESSES::ADDRESS_2, ADDRESSES::ADDRESS_3) and
self.utilities.areNeighbours(ADDRESSES::ADDRESS_2, ADDRESSES::ADDRESS_4) and
self.utilities.areNeighbours(ADDRESSES::ADDRESS_3, ADDRESSES::ADDRESS_4) and
not(self.utilities.areNeighbours(ADDRESSES::ADDRESS_1, ADDRESSES::ADDRESS_4))” on_instance
waveForm

then use $ATT

This makes the test purpose less easy to read and understand. A keyword has been introduced to allow the
following test purpose expression:

for_each operation $ATT from #attacks,
use move any number of times to_reach #initialNodesConfiguration
then use $ATT

The keywords can either be defined immediately, or the mapping with the model can be done afterwards.
Here for each keyword we would have the following definition:

attacks: list of operations = attack 1 or attack2 or attack 3

initialNodesConfiguration: state on waveform = self.utilities.areNeighbours(ADDRESSES::ADDRESS_1,
ADDRESSES::ADDRESS_2) and

self.utilities.areNeighbours(ADDRESSES::ADDRESS_1, ADDRESSES::ADDRESS_3) and
self.utilities.areNeighbours(ADDRESSES::ADDRESS_2, ADDRESSES::ADDRESS_3) and
self.utilities.areNeighbours(ADDRESSES::ADDRESS 2, ADDRESSES::ADDRESS_4) and
self.utilities.areNeighbours(ADDRESSES::ADDRESS_3, ADDRESSES::ADDRESS_4) and

not(self. utilities.areNeighbours(ADDRESSES::ADDRESS_1, ADDRESSES::ADDRESS_4))

© Copyright DIAMONDS Consortium

Page : 20of 80

Version: 1.0
Date : 22.05.2013

= — Deliverable ID: D5.WP3 Fi
DIAMONDS e Confid . PUblc

Keywords are defined for a test suite, so the attacks or initialNodeConfiguration can be used in several test
purposes, and be defined one. This render test purpose creation and maintenance easier, as the
modification of a keyword definition impacts all the test purposes using it.

Final Security Testing Tools

The test purpose editor now also embeds the keyword editor, with completion upon model elements.

i suite B =5
Test Purposes definition and information g
Keywords Keyword definition
|initialNodesConﬁguration Type |State on waveForm =
attacks

self.utilities.areNeighbours(ADDRESSES::ADDRESS_1, ADDRESSES::ADDRESS_2) and
self.utilities.areNeighbours(ADDRESSES::ADDRESS_1, ADDRESSES: :ADDRESS_3) and
self.utilities.areNeighbours(ADDRESSES::ADDRESS_2, ADDRESSES::ADDRESS_3) and
self.utilities.areNeighbours(ADDRESSES::ADDRESS_2, ADDRESSES::ADDRESS_4) and
self.utilities.areNeighbours(ADDRESSES::ADDRESS_3, ADDRESSES::ADDRESS_4) and

not(self.utilities.areNeighbours{ADDRESSES::ADDRESS_1, ADDRESSES::ADDRESS_4))

+||= i Keyword defined correctly.
Test purposes Test Purpose definition
attackinCenfiguration Tags @REQ: attack_in_configuration

for_each operation $ATT from #attacks,

for_each integer $i from {1, 2},

use move any_number_of_times to_reach #initialNodesConfiguration
then use SATT §i times

|| = i Test Purpose defined correctly.
Figure 8: Smartesting Test Purpose and Keywords editors

2.2.3.2 Test Purpose Language improvements

The test purposes are test selection criteria that define the way to generate tests from the test generation
model. The language is designed to be expressive enough to create tests from the test generation model.

For the need of several test purposes, the usage of an operation must be restricted in regards of the value of
its return parameter. In the initial version of the test purpose language this was not possible. For instance, if
an operation has a return parameter that express the success of the failure of that operation, we could
express that we only authorize its usage in a success way. Here is the chosen way to express that
constraint:

for_each operation $ATT from #attacks,
use move with_result SUCCESS any number of times to_reach #initiaINodesConfiguration
then use $ATT

2.2.3.3 Test Generation Engine improvements

In order to make the test generation more efficient, the generation engine has been modified. A specific
algorithm has been dewveloped especially for the need of the test generation from test purposes, as the
previous one was dedicated to generate test sequences from behavioural objectives, and was just adapted.

2.2.3.4 Automatic model parts generation

In order to assist the modelling task, around the Gemalto TSM case study, a prototype has been developed.
It consists in generating behavioural model parts from existing .xml configuration files for the SUT.

© Copyright DIAMONDS Consortium

Page : 210of 80

Version: 1.0
Date : 22.05.2013

@\Uﬁlﬂ‘_’ﬂ @ m\@/g Deliverable ID: D5.WP3 iﬁ:g Eggllic

During the TSM configuration stage, each .xml file (called StateChart) is imported to define the workflow that
must be followed to perform an action on the TSM (senice activation, eligibility check...). Each of those file,
when imported, is interpreted as a state machine in the model with OCL annotations.

The Smartesting Certifylt test generation engine is able to use them, in addition to test purposes altering the
nominal workflows, to generate test sequences. The Figure 9: Smartesting test model import from TSM
StateChart plugin situates this feature in the Smartesting process.

Final Security Testing Tools

- T s = ===== f

! 1

! 1

: Security : Security)

I | Requirements I_ Engineer Security Test

: objectives

I

: : Security

! y \ I Test

! qaw Engineer

I A : -

l \ o d

: Security :

1 Test Purposes) o
Smartesting
SecurityTest

N Generator
SecurityTest
Requirements Generation Model =
S

Figure 9: Smartesting test model import from TSM StateChart plugin

This feature has been included in the Smartesting Certifylt plugin for IBM Rational Software Architect. A
menu has been created, and a TSM StateChart can be imported as seen in Figure 10:

S Alerts and Acti
 Disgrams
& vodk There are no prc
g as(RFETIT >
Add Diagram » General Inform
=g fesct
Add Sharteut
ten » ame
o Losstons [«
Open With » ize:
A com ;
Last modified: |
Closs All
Save fs. Ediable: t
Navigate » —
vsualee , This secion s B project Explorer 3¢ B%|3 5|4 T 22
=2 1M
s , \;e 2 bisgrams Alerts and Actid @) 75| StateChart importation -J=
efactor) - 4 There are o prol
S oo] 5l g gdels Gemalto TSM
TaM
N o General Informi - sgject Gemaleo StateChart xml il
229 Import. -0 Inbiabata This section descr
/3 Export, "4 Intiel Data
o Ex .
H suT_nstance Hiame: 1
=] Main Location: [
| &) Refresh Fs Overview | Detalls (] sur
i Layers 23 =8 = —~ S Size: 3
FindfReplace... = Properties £ o o B
™ pen
% Transform » S <Model> T
Layersarenct 4 Apply Theme... Lookin: | 3 DismondsGT0 v @& e m-
Apply Default Theme: -
CY - MPP10Activation _ROH.xml
Software andlyzer b Stereatypes § =] MPP1DDeletion_RGH el
Team . —— My Recent | TM_CheckEigbilty PPl
Compare vith » T Documents
Replace With » nahil "
B srartestin v L
. Desktop
o
=] Pronert tirs —
.
My Documents
) Lavers £2 B2 Outine | =
Layers are not avalable, My Camputer
- Protected (O Package
File name: | MPP10Activation_ROH.ami v [Coeen |
MyNotwok Files ofyps: [~ [v] [Concel]
o T

Figure 10: Smartesting test model import from TSM StateChart importer

© Copyright DIAMONDS Consortium

Page : 220of 80

Version: 1.0
Date : 22.05.2013

. | i bl : . Fi
@D@M@M@S Deliverable ID: D5.WP3 2'[051;:3 : ESglliC

The result of the import is the creation of a UML State Machine, with the transitions having triggers, guards
and effects specified in OCL, respecting the imported TSM StateChart. Please refer to Figure 11 and Figure
12 for screenshots for model parts generated from TSM StateChart and test sequence from TSM StateChart
imported model.

Final Security Testing Tools

[#*Project Explorer 2 9E | &Y =0
= T -

#-(2 Diagrams Il

o (22 Models

=B [T *
=-E3 InitialData
=B MPR10_ACTIVATION_ROH
©-B Events

£ MPP10_ACTIVATION_ROH_instance
=& MPP10_aCTIvATION_ROH
- step

42 ANALYZE_APDU_RESPONSES ()
3 CREATE_AD ()
4 ENCAPSULATE_SCPDZ ()
43 EXTRADITE_APPLICATION {)
4 INCR_SEQ_COUNTER ()
3 INSTALL_FOR_PERSO ()
43 INSTANCIATE_APPLICATION ()

&
+ =

. R T o P ——

®

&

it

£ L]
45 LOAD () D OTE_STER
®

&

®

®

&

®

3 MPPID_ACTIVATION ROH

43 PERSO_CPS ()

42 ROH_SEND_APDUS ()
42 SEND_NOTIF { } sg;}.gﬂ;ﬁ:{pr}x_ncv\oulnrﬁ_scu_:rasavf_m_svs!‘f wd SUIT.alinstane:
43 SYNC_SEQ_COUNTER () et
42 UPDATE_REGISTRY ()

3 MPP10_ACTIVATION_ROH
MPP10_ACTIVATION_ROH_STATES
B Initial Data

Sarplirue) SEHD,_NOTIF() = ACTIOH STATUSES::OK ACTION, STATUS]

D16 CREATE A0 STE

E (s STEP_OK_ACTICH_STATUS_ P30 CREATE Ay STEP{Gurdl: in_ AP NANE = APP_MAME(:_SD16 and ST aflnstances{)-»any(trus).CAEATE_AOiin_APP_WAME) = ACTION_STATUSES: CK_ACTION_STATUS]

9 MPPIO_CREATE 40 _STEP

$EE1D_CHEATE AD STES OF ACTION STAIUS.sirvfve ENCAPSULATE SCPUR, STEPIGu G n ASP. NAPE = ARP_NAVE; WP sn SUT, dinstaest)->aryus) CREATE_AQKI AZP NAVE) = ACTION
£ SUT_instance T CREATE A AP NAPE | PP JANE)
fect
Main -

3 synchvo_ENCAPSWLATE _SCPO2_STEP
5 arclin_SL= L1 3 and i 5D HANE = S0_NAME::_ISD s in_AFP_WAME = 495 biAl

w5 sur

02 and n_5CPi= 51

o ENCAPSLLATE SCP02_STEP_ Ot ACTION_STATUS s SEND_APOUS_ STER{Gusr: n SCP = 509,

&[] ACTION_STATUSES G ENCAPSUALATE SCPG2 {1 525 SEF) m S 5P, Lk 1 5L, . 5, N - S0_NAOR, AP NAHE A WAV, . A, SEL8CT : 0 SELECTS

-E=] apD_SELECT el

#-[E] APP_NAME

#-[E] HAS_TOKEN syrchs SEND_APOLS STEP_(¢_ACTION, STATLS_syrchrn_ Sl ZE_RAFDU_STESfGusrd: i fect_ DISPLAY_TITLE = ROH_DISFLAY_TITLE:
G ACH_S1D_APOUS (r_JRoF_DISFLAY_TTTLE - RGH_DIPUAY_TITIE, n_FH_DISFUAY_TEXT : ACHLDISFLAY_TEXT)

#-E=] ROH_DISPLAY_TEXT i

ROH_DISPLAY_TITLE
o BE con 5 ANALYZE RAPDU_STER

AHALYEE_RAPDU_STEP. BAD_SEQ)_COLNTER_AWCTION STATUS SYHCH

Figure 11: UML/OCL model parts generated from a TSM StateChart

Without any other manipulation, first test sequences can be generated from the model as followed.

&l Smartesting Certifylt 5.3.1 - TSM [C:\Workspace TSM\TSM\SCH] BE=
Project Preferences Help
o imldl ® < (8 | [%L publisher ~
25 stories |) Tests |, &, Requrements | Test detail
St
QU Search stories [reacheds Tov?e =2 —_—
- Default t
ArtFacts Status | Tests |0 < 2t moce Inetanee
B Initialzed model instance
o |8 & Proex — 3 |-
BN p— . VPP 10_ACTIVATION_ROH _nstance. SEND_NOTIF()
e Hh - N MPP10_ACTIVATICN_ROH_instance.CREATE_AG(_SD16)
B 7 MPPIO_ACTIVATION ROH::ANALYZE_RAPDU_STEP_OK_ACTION STATUS_INCR,_SEQ_COUNTER_ v 1
R T TR O : MPP10_ACTIVATICN_ROH_instance.CREATE_AO(_MPP10)
: RO, ANALYZE FAPDLLTER - . PP 10_ACTIVATION_ROH_instance. ENCAPSULATE_SCPO2(_07, S5, _3, ISD, _ISD, TRLE)
TATECHART MDD ACTVATION.ROH oo VPP10_ACTIVATION_ROH_jnstance.RCH_SEND_APDUIS(_MPP1_0, INSTALLATION IN_PROGRESS)
: STATLS. OK ACTION STATUS N . MPP10_ACTIVATION_ROH_instance. ANALYZE_APDLI_RESPONSES{_MPP10)
I ST T oo VPP10_ACTIVATION_ROH_jnstance.INCR_SEQ_COUNTER(_ISD)
(&1— <onex - N . -MPR10_ACTIVATION_ROH instance.LOAD(_MPR10, FALSE)
none: v
- MPP10_ACTIVATICN_ROH_instance.INSTANCIATE_APPLICATION(_MPP0, FALSEY
. VMPP10_ACTIVATION_ROH_jnstance.IPDATE_REGISTRY(_MPPLO, FALSE)
' MPPI0_ACTIVATION_ROH: B_ANALYZE_RAPDL_STEP_OK_ACTIC_STATUS_B_INCR_SEQ_COLIN v 1
. MPP10_ACTIVATION_ROH_instance. EXTRADITE_APPLICATION(_MPP10, SD16, FALSE}
' MPPI0_ACTIVATION_ROH:8_ENCAPSULATE_SCPOZ_STEP_OK_ACTION_STATUS_B_SEND_APDLIS v 1
. MPP10_ACTIVATION_ROH_instance.ENCAPSLLATE_SCPO(_02, S5, _3, ISD, _ISD, _TRLE)
** MPPI0_ACTIVATION_ROH: 8_INCR _SEQ_COLNTER_STEP_OK_ACTION_STATUS_TERMINATE - IN v 1
. PP 10_ACTIVATION_ROH_jnstance.ROH_SEND_APDLIS(_MPP1_D, INSTALLATION IN_PROGRESS)
' MPPI0_ACTIVATION_ROH: 8 _SEND_APDUS_STEP_OK_ACTION STATUS_B_ANALYZE_RAPDU_STE v 1
. VPP10_ACTIVATION_ROH_instance.ANALYZE_APDU_RESPONSES{_MPP10)
%~ MPPI0_ACTIVATION_ROH: ENCAPSLLATE_SCP0Z_STEP_OK_ACTION_STATLIS_SEND_APDLS_STE v 1
. - MPP 10_ACTIVATION_ROH _nstance.INCR_SEQ_COLNTER{_ISD)
' MPPID_ACTIVATION_ROH: EXTRADITE_STEP_OK_ACTION_STATLIS_ENCAPSULATE_SCPO2_STEP v 1
. MPP10_ACTIVATICN_ROH_jnstance.[NSTALL FOR_PERSO[_MPP10, FALSE)
** MPPI0_ACTIVATION_ROH:INCR_SEQ_COLNTER_STEP_OK_ACTION_STATUS INSTALL FOR_PEF v 1
. MPP10_ACTIVATION_ROH_jnstance.PERSO_CPS(_MPP10}
' MPPI0_ACTIVATION_ROH: INSTALL_FOR_PERSO_STEP_OK_ACTICN_STATLIS_PERSO_CFS_STER v 1
. MPP10_ACTIVATION_ROH_instance. ENCAPSLLATE_SCPO2(_07, 55, 3, SDL6, D16, “TRUE)
'+ MPPI0_ACTIVATION_ROH; INSTANCIATE_STEP_OK_ACTION_STATUS_UPDATE_REGISTRY_STEP v 1
. MPP10_ACTIVATION_ROH_jnstance.RCH_SEND_APDLIS(_MPP1_0, PERSONALIZATION_IN_PROGRESS)
' MPPI0_ACTIVATION_ROH::LOAD_STEF_OK_ACTION_STATLIS_INSTANCIATE _STEF - LOAD() v 1
. PP 10_ACTIVATION_ROH_jnstance. ANALYZE_APDLI_RESPONSES{_MPP10)
'+ MPPI0_ACTIVATION_ROH: MPP10_CREATE_A®_STEP_OK_ACTION_STATUS _synchro_ENCAPSLIL v o1
' MPPI0_ACTIVATION_ROH:PERSO_CPS_STEP_OK_ACTION_STATUS_E_ENCAPSLLATE_SCP0Z_ST v 1
' MPPID_ACTIVATION_ROH::SD16_CREATE_A_STEP_OK_ACTICH_STATLIS_MPP1D_CREATE_AG_ v 1
- MPPI0_ACTIVATION_R.OH::SEND_APDUS_STEP_OK_ACTION_STATUS_ANALYZE_RAPDU_STEP - ¢ 1 Pait of vizw
- MPPI0_ACTIVATION_ROH::SEND_NOTIF_STEF_OK_ACTION_STATUS_SD16_CREATE_AQ_STEF - v 1 v
7 MPPAO_ACTIVATION_ROH: TERMINATE final S Tass ofthe sute reached by the test (bald for et steg)
** MPPI0_ACTIVATION_ROH: 1UFDATE _REGISTRY_STEP_OK_ACTION_STATUS_EXTRADITE_STEP - L v 1 FROM_SEND_APDLE_STEP =
' MPPI0_ACTIVATION_ROH: isynchro_ANALYZE_RAPDU_STEP_OK_ACTION_STATUS synchro_INCF - 1 ;ROB;‘AN:WAZLEV_ZR;:%UPBTESPTEP
"+ MPPLO_ACTIVATION RORisynchvo_ENCAPSLLATE_SCPU2 STEP_OK_ACTION STATUS syrctro. v 1 B e L
' MPPI0_ACTIVATION_ROH::synchro_INCR_SEQ)_ COUNTER_STEP_OK_ACTION_STATUS LOAD_ST v ot FROM_INCR_SEQ_COLNTER_STEP [
* MPPI0_ACTIVATION_R.OH:isynchro_SEND_APDUS_STEP_OK_ACTION_STATUS synchra_ANALYZE v 1 TO_INSTALL_FOR_PERSO_STEP [
% SUT:AMALYZE_APDU_RESPONSES() 2 1 L_ACTION INSTALL_FOR_PERSO
& SUTHCREATE_AQQ w 1 [=|| Reachedtags / Activatedtags | Parameters | Model nstance

11 Console |

Figure 12: Generated test sequence from TSM StateChart imported model

© Copyright DIAMONDS Consortium

Page : 230f 80

Version: 1.0
Date : 22.05.2013

=SS — Deliverable ID: D5.WP3 Fi
DIAMONDS e Confid . PUblc

2.2.3.5 Conclusion

We have seen DIAMONDS addition to the Smartesting Certifylt Security Oriented test generation prototype.
The Test Purpose language has been used on different DIAMONDS use cases, which enabled to improwe its
expressiveness, like for instance output parameters specification.

The language manipulation and maintenance have been improved thanks to the keyword editor, and a first
prototype has been created around the Gemalto TSM case study to assist the modelling activity. As this last
point is still a work in progress, the other features described in this document are now part of a beta feature
in the Smartesting Certifylt solution.

Final Security Testing Tools

© Copyright DIAMONDS Consortium

Page : 24 0of 80

Version: 1.0
Date : 22.05.2013

. | i bl : . Fi
@H@M@M@% Deliverable ID: D5.WP3 2'[051;:3 : ES;lic

2.3 FRAMEWORK FOR ACTIVE SECURITY TESTING (FSCOM)

Final Security Testing Tools

2.3.1 Description of the Tool

FSCOM, member of ETSI and technology partner of Testing Technologies, is focused on active testing
targeting communication protocols security and conformance. FSCOM provides solutions based on TTCN-3
[19] standardized and promoted by ETSI In the second part of this project, FSCOM has deweloped a
prototype for active security testing based on the Gemalto case study [16]. Figure 13: Gemalto TSM
interfaces describes the different interfaces provided by the TSM for functionalities such as TSM
administration, customer administration etc. The FSCOM prototype is focused on the interface 2”, named
RoH Proxy.

Connectors, Fagade
WS "
Monitoring E
sEsssznEmEEy AP Out

TSMAPI

e i)
: Subs,
SE SE

sp
TSM [F rontend Semces Services
Admins ns -

__.—.——»L i
\ '.—)) oran o | WSS p—
Client

U0 dach

Push-sMS Push-3MS
SIS 02.48
CAT-TP

MNO

Figure 13: Gemalto TSM interfaces

Typical threat scenarios for the Gemalto use case occur when an attacker tries to use malicious ProxyAgent
software hosted by an end user mobile or smart phone. Based on an extended HTTP protocol (Remote
Application Management over HTTP [17]), the prototype validates wilnerabilities such as injection of altered
protocol messages in the network traffic (network injection), brute-force attacks or denial/destruction threats
attacking the interface 2" of the TSM framework [16].

The present framework is close to that used for Thales case study [18] and provides a ‘black box’ approach
with functional test case design based on an analysis of the specification of the interface 2” of the TSM
framework [16] and the extended HTTP protocol (Remote Application Management over HTTP [17].)

The FSCOM approach is focused on active attacks applying the strength of the TTCN-3 related test
methodologies to new fields, i.e. testing web senices security.

2.3.1.1 Introduction to the Security testing framework (FSCOM)

The security testing framework is made up by a set of tools that provide:
o |dentification of the candidate implementations under test (IUT) for security testing;

© Copyright DIAMONDS Consortium

Page : 250f 80

Version: 1.0
Date : 22.05.2013

= — Deliverable ID: D5.WP3 Fi
DIAMONDS e Confid . PUblc

e Definition of the applicable tests, i.e. answering the question "what and how to be tested";
e Dewelopment of the resulting test specifications.

Final Security Testing Tools

For the Gemalto use case the following security testing related topics will be cowvered in the subsequent
clauses:

Identification of candidate EUTs/IUTs.

e |dentification of test scenarios.

e Definition of test bed architecture.

Identification of test bed interfaces.

2.3.1.2 Security testing

The following clauses provide security testing methodologies on which FSCOM based the active security test
framework.

2.3.1.2.1 Candidate EUTs/IUTs

For security testing, both "Implementation Under Test" (IUT) and "Equipment Under Test" (EUT) are
considered. An EUT is a physical implementation of one or more network layers (IUT), which interact with
one or seweral other EUTs via one or more reference points (RPs).

2.3.1.2.2 Test scenarios

In security, a large number of use cases are already identified. In a specific implementation of an IUT, very
likely only a sub-set of these use cases is supported. In order to perform the tests, IUTs supporting the same
use cases are required.

2.3.1.2.3 Test bed architecture

The "System Under Test" (SUT) contains (refer to [19], [20] and [21):

e The "Implementation Under Test" (IUT), this is the Gemalto TSM, focused on interface 2”.

e The "Upper tester application" enables TSM actions such as ‘eligibility check’ or ‘workflow activation’.

e The "Lower tester" enables to establish a proper connection to the system under test (SUT) over an
Ethernet physical link.

e The "Upper tester transport” enables the test system to communicate with the upper tester
application. Then the upper tester can be controlled by a TTCN-3 test component as part of the test
process.

The "Security test system" contains (refer to [19], [20] and [21]):

e The "TTCN-3 test components" are processes providing the test behaviour. The test behaviour may
be provided as one single process or may require several independent processes.

e The "Codec" is a functional part of the test system to encode and decode messages between the
TTCN-3 internal data representation and the format required by the related base protocol standard.

e The "Test Control" enables the management of the TTCN-3 test execution (parameter input, logs,
test selection, etc.).

e The "Test adapter" (TA) realizes the interface between the TTCN-3 ports using TTCN-3 messages,
and the physical interfaces provided by the IUT.

Figure 14 describes the functional architecture of the security test bed:

© Copyright DIAMONDS Consortium

Page : 26 of 80
: : . Version: 1.0
Final Security Testing Tools Date - 22.05.2013
N — Deliverable ID: D5.WP3 Status : Final
@D@M@M@% Confid : Public
Security test system SUT

Test control

Upper tester

application
é TTCN-3 test components
(e}
) IuT
Port Upper Port
tester
Test adapter I
Upper tester Lower tester Lower layers Upper tester
transport transport

Lower layers link

Upper tester transport link

Figure 14: Security test system architecture

2.3.1.3 Identification of abstract test method

An abstract protocol tester presented in Figure 15 below is a process providing the test behaviour for testing
an IUT. Consequently it will emulate a peer IUT of the same layer/the same entity. This type of test
architecture provides a situation of communication which is equivalent to real operation between real
devices. The security test system will simulate valid and invalid protocol behaviour, and will analyse the
reaction of the IUT. Then the test verdict, e.g. pass or fail, will depend on the result of this analysis. Thus this

type of test architecture enables to focus the test objective on the IUT behaviour only.

In order to access an IUT, the corresponding abstract protocol tester needs to use lower layers to establish a

proper connection to the system under test (SUT) owver a physical link (Lower layers link).

Security test system

SUT

PDUs
Abstract protocol tester g e====a=pp

IuT

Security lower layers

Security
lower layers

Lower layers link

Figure 15: Generic abstract protocol tester

© Copyright DIAMONDS Consortium

Page : 27 of 80

Version: 1.0
Date : 22.05.2013

= — Deliverable ID: D5.WP3 Fi
DIAMONDS e Confid . PUblc

The "Protocol Data Units" (PDUs) are the messages exchanged between the IUT and the abstract protocol
tester as specified in the base standard of the IUT. These PDUs are used to trigger the IUT and to analyse
the reaction from the IUT on a trigger. Comparison of the result of the analysis with the requirements
specified in the base standard allows assigning the test verdict.

Final Security Testing Tools

2.3.1.4 Protocol description

Remote Application Management over HTTP protocol is used by the TSM for remote communication
between the senice provider and the End User Secure Element such as a USIM card [17].

In addition of tags already defined by these standards, Gemalto TSM uses an extended RAM over HTTP
provided additional tags such as display information or error messages.

2.3.2 Application to Case Studies

2.3.2.1 Thales case study (final results)

In this second run, we integrated MNT tool to retrieve network traffic generated by the radio stack and we
implemented active testing concept.

23211 Active testing

Active testing is used to trigger different kinds of attack on the radio stack.

Three triggering methods were proposed:
e Attack is triggered when a random delay after starting the test case is reached;
e Attack is triggered when a specified timeslot is used,;
e Attack is triggered when a specific delay is elapsed.

2.3.2.1.2 Integration with MNT

In parallel with MNT traffic network analysis the MNT tool forwards network traffic messages to our
framework.

2.3.2.1.3 Results
The screenshot below in Figure 16 shows an execution of the testing framework applied to the Thales case
study:

1. This framework is based on:
a. Test cases deweloped in TTCN-3 language which:
i. Trigger attacks on the IUT (bottom-right DOS windows),
ii. Check the IUT behaviour according to the rules as defined by MNT,
b. A TTCN-3 tool which executes these test cases (background window),
c. The MNT tools (top-right DOS window) which:
i. Collect the network traffic,
ii. Check security rules as defined by MNT
iii. Forward the logs to the TTCN-3 tool
d. The Thales radio stack, the IUT (top-left DOS window)

© Copyright DIAMONDS Consortium

DIAHONDS

Page 28 of 80
_ _ , Version: 1.0
Final Security Testing Tools Date : 22.05.2013

Deliverable ID: D5.WP3

Status : Final
Confid : Public

Nc:mhl e d’ attague

rl‘ attanue

= 2 sur la

restante: 1L
vertantr: 1

couche UHAC_DS
restante: L

» vestantr: 1

2 sur la
3 rl‘artar[llp

restante! 1

conche UAARC_HY
reetante !

restante: 1
restante: 1

couche UHAC_BE
restante: 1

restante: 1

veetante: 1

en cours?

en cours?

an couwzt

“\Nacuments and Settings\PFl VA\Rurean\28-08-7012 Arnand Raloche Fi

<deccwription?
SECURITY_RULE: DataUMAG within MEG_SPHY_DATN_IMD mczsoge is well £
n replove rules 6 and mere 3
<rdescril
Kevent<{att tineslot=-B0A267{ attr
<Jatrlh:lhm-e)(:lefc1-1pt:lon >E||ENT i8: NSG_SEFHY_DATA_IND megoaged Adesond
tErihute HEC_TOFO_[HD_ECH.MEC_FORMAT - 1634
atLribuLe ribute valugiy— — - — - M3G_SFHY_Dn
tribute_valueli—
‘attribute ¥ event>{/occ

[¥FE = B{rattribute ualLleA/artl ibuter{attribute <
ALES NETA.NSG CODE = 8123<{r atrribute walueX{/

{verdictrnot_respected<sverdictl
escription?
ITY_BULE: The declared neighbhors of a nodes are distinct
iption’
Hevenl{allribule*{al lribule_value ¥— = — = = Lineslol-8082697{ allr
[satteibute >{descript ion >EVENT 28: NSG_SFHY_DRTA_IND C(SCH? nessage</
CattrihuteX<attribute valued- — — - — = MSG SPHY DATA IND.3LCT TYFE
ite_walue>dsattrihute ¥attribured<atrtribute_ualue TH
E — #193{/attributc_value - artributc>{ /cvent < occwrcncc?

AR
Test Caze
— .k
"
B
2
o G
']
o B
/
g <&
]
— B
,
- it}
@
L]

ampaign ig Lp-to-cate

-~ 07:33:32.656

07

17:33:37.¢5

U4 3250E56

WR-EEE4 B BF |2
MTC SYETEN T
LibDiamo .. LibDiamro... Sel L inyswFEL U3sBureau~D.I.A.H.]

match |PhyTnd: m

Hhylnd: m

T8 llpper Tester___"

sic 1.1.143C:=
settings FPEL UVisBureausD.1.A.
V3sBuraaunD.I.A.

Exzcufing Test Cases: (03 Vi~BureansDb.I.A.

Figure 16: Execution of the testing framework screenshot

2.3.2.2 Gemalto Case Study

23221

2.3.2.2.2

2.3.2.2.3

Simulation of the malicious ProxyAgent

In the Gemalto TSM ecosystem, the ProxyAgent is a piece of software executed on the end user mobile or
smart phone environment. Its role is to execute binding processes or issuances and revocations thanks to a
contactless smart card reader (mobile or smart phone).

The purpose of FSCOM’s prototype is to simulate this ProxyAgent and to try to attack the Gemalto TSM in
order to download unauthorized application such as banking application.

Integration with MNT

Due to very late beginning of the work on this case study, it was not possible to access TSM logs and to
integrate the MNT tool as expected initially.

Results

The Figure 17 shows a malicious attack which set the HTTP tag Content-Length to 65535. The TSM rejects
the HTTP request with error code 204.

© Copyright DIAMONDS Consortium

Page : 29 of 80

Version: 1.0
Date : 22.05.2013

. | i bl : . Fi
@D@M@M@S Deliverable ID: D5.WP3 2'[051;:3 : I;IS;IiC

Final Security Testing Tools

& TTCN-3 Execution Management - TTworkbench Basi o T |
File Edit Mavigate Search Project Refactoring Run Window Help
i Q- P~ ~El ks o o H £ b % & B[
= Management 52 P Meta Campaig | = 01 |[E° TestData 32 .] Dump| B Console d a[@e & =8
&
~ | Expected TTCN-3 Template Data "
=R type filter text type filter text =
EE-F-04 B0~ Name Value “ MName Value e
S-S -ad
P " - W' Face2SMonitor W Face2SMonitor
2 ttpResponse ttpResponse
P & httpResp httpResp
ase = m httpCode 1 ® httpCode g
+ & voldbehaviour Y T 2 01
4 & TC_PCPROXY_HTTP BV 01 1 B httpStatus u hitpStatus
® 10052711 L S N0 |
4 & invalidBehaviour W httpTags W httpTags
@ TC_PCPROXY_HTTP_BI 01 1 <& contentLength ? <F contentlength 0
& maliciousRoHTagValues # contentType application/vnd.globalpl... # contentType application/vnd.globalpl...
4 & invalidBehaviour & host & host
& TC PCPROXY ROH RI 01 17 o rohTags i rohTags
< [» F whdminPratocol alnhalalatform-remote.a ~Z £ xAdminProtocal alnhalnlatform-remote- 52
1 Parame 5 [l TestAd| O Propert| = 01 | LB TTEN-3 Graphical Logging £3 TTCN-3 Textual Logging| [Log Stack| & Progress wx -~ & | GES O-5MAl@Ee|dF =0
= MTC SYSTEM
ERCE [ibGemal.] LibGemal.]
type filter text
14:00:54.236 +++ TC_PCPROXY_HTTP_BV_01: INFO: Clause ‘when' done ==* m
Hamey - send Iface2Shessa
& otherSyncModuleDefintions 1 14:00:54.247 iface25Port iface2sPort
& syncModuleparams 1 14:00:54.367 ‘tc_ac30.0)
o PX_TSYNC_TIME_LIMIT receive
& PX_TSHUT DOWN_TIME_LIMIT 14:00:54.515 face25Port | el S e it c225PorE
& timeLibModuleParameters 14:00:54.532 jmusmatm Il(a(EZSMnmtm: my_iface2SManitor_httpResponse_ok
& PX_TDONE
& PXTAC 14:00:54.533 TiEmateh | face2SMonitor: mi_iface25Monitor_httpRespanse_ok_other
& PX_TNOAC 14:00:54.534 match |lface2SMonitor: myy_iface2SMonitor_httpResponse_any 3
@ P TWAIT
& PYLOCP 14:00:54.535 —>te_acl0.168)
o PICIS_TSM_MONITORING_LOGS_SUPPORT ~ 14:00:54,535 [+ TC PCPROXY HTTP BV 01: ERROR: Expected message not received **
< v « =
= = campaign is up-to-date

= ™|
A W @ Ay gl 204PM

2.3.3 Advances during DIAMONDS
2.3.3.1 Tools to convert Montimage security rules into ETSI TPLan language

2.3.3.1.1 Synoptic

ETSI has introduced TPLan in 2009 [31]. TPLan is defined with a minimal set of test-oriented keywords but
owns the capability that permits users to define extensions to the notation. The benefits of using TPLan are:

e Consistency in test purpose descriptions - less room for misinterpretation;

e Clear identification of the TP pre-conditions, test body, and verdict criteria;

e Automatic syntax checking and syntax highlighting in text editors;

e A basis for a TP transfers format and representation in tools.

FSCOM deweloped a tool, as part of our security test framework to translate security rules introduced by
MNT into TPLan [31]. This tool is based on XSL technology to translate XML tags describing a security
property as introduced by MNT into a TPLan description.

This tool is truly innovative because a TPLan description could be used for producing test purpose
description as introduced by ETSI methodologies and also for producing the test cases codes.

2.3.3.1.2 Results

The pseudo-code [Code 2] shows the result of the translation of a MNT security rules into TPLan. In ETSI
methodologies, the TPLan pseudo-code is very important to produce test purposes documents and to
dewelop test cases.

© Copyright DIAMONDS Consortium

Page : 30o0f 80

Version: 1.0
Date : 22.05.2013

= — Deliverable ID: D5.WP3 Fi
DIAMONDS e Confid . PUblc

<property value="THEN" delay_min="-1" property_id="1" type property="SECURITY_RULE"
description="DataUMAC within SPHY_DATA_REQ message with a slot type equal to SCH must be
the same transmitted within the previous UMAC_GA DATA_REQ message">
<event value="COMPUTE" ewent_id="1"
description="SPHY_DATA_REQ message with a slot type equal to SCH"
boolean_expression="((BASE.PROTO == 1)&&(MSG_SPHY_DATA_REQ.SLOT _TYPE ==
0)&&(BASE.TIME_SLOT ==
BASE.TIME_SLOT.2))&&(MSG_UMAC_GA_DATA_REQ.RLC_Q_DATA.2 ==
MSG_SPHY_DATA REQ.SDATA_UMAC))"/>

Final Security Testing Tools

<ewvent value="COMPUTE" ewent_id="2"
description="UMAC_GA_ DATA_REQ message with the same transmitted Data"
boolean_expression="(BASE.PROTO == 801)"/>
</property>

Code 1: MNT security rule #1

/**

* @desc (property_id #1) DataUMAC within SPHY_DATA REQ message with a slot type
equal to SCH must be the same transmitted within the previous UMAC_GA DATA_ REQ message

* Pics Selection: none

* Config Id: CF02

* <pre>

* Initial conditions:

* with {

* Not applicable

“}

* Expected behaviour:

* ensure that {

* when {

* SPHY_DATA_REQ message with a slot type equal to SCH, and

* UMAC_GA_DATA_REQ message with the same transmitted Data

*)

* then{

* (BASE.PROTO == 1) and ((MSG_SPHY_DATA_REQ.SLOT_TYPE == 0) and
(BASE.TIME_SLOT == BASE.TIME_SLOT.2)) and (MSG_UMAC_GA_DATA_REQ.RLC_Q DATA.2 ==
MSG_SPHY_DATA REQ.SDATA_UMAC)), and

* (BASE.PROTO == 801)

)

*

* <[pre>

*

* @wersion 0.0.1

*/
Code 2: TPLan pseudo-code generated from MNT security rule #1

© Copyright DIAMONDS Consortium

Page : 31o0f 80

Version: 1.0
Date : 22.05.2013

=SS — Deliverable ID: D5.WP3 Fi
DIAMONDS e Confid . PUblc

2.4 STATIC AND DYNAMIC APPLICATION ANALYSIS FOR VULNERABILITY
DETECTION

Final Security Testing Tools

2.4.1 Description of the Tool

Grenoble INP has been working in two directions for wlnerability detection, namely grey-box based static
security analysis of executables for wilnerability detection and black-box based model inference assisted
ewlutionary fuzzing for wulnerability detection. Both of the approaches are explained in WP2 [1]. In the
following sections, we describe the prototype implementation of two tools based on the approaches.

2.4.1.1 Grey-box based Static Security Analysis of Executables for Vulnerability
Detection

Based on the technique described in [1], a prototype named Light-weight Static Taint Tracer (LiSTT) is
implemented. Figure 18 provides a high lewvel view of the tool.

IDE file ; :
IDA Pro 4:{) Binkavi APls

/- F detection

_f Argf 6

7~ actual param /i sz 9
d 1ttt-:! “"t-'“l'llfit-""ﬁ 7 -callgraph <lices *,
LSt Bl - dataflow analysis

!

5

4LSTT |~ AL

Figure 18: LiSTT architecture

First, IDA Pro (2) takes as input a binary file (1) and produces an .idb file which is loaded into the BinNawvi
framework (3). LiISTT (4) interacts both with BinNavi APl and IDAPython API (6) to perform intra- and inter-
procedural dataflow analysis (7). The produced result (5) is the set of wilnerable paths that have been
detected with respect to an input source IS (provided as input).

In order to analyse a binary, there are three major steps as described below:

2.4.1.2 Getting the Disassembly of the Binary Executable

In order to analyse a hinary, it is first disassembled into the corresponding assembly code. LISTT handles
x86 code and therefore, the binary is converted to x86 assembly code by using IDA Pro [3]. As LISTT
performs dataflow analysis on the binary, we need to know all the useful memory locations within the binary.
The useful memory locations are arguments and local variables for functions. LiSTT has python scripts to
extract this information. After IDA Pro finishes analysing the binary, we execute a python script within IDA
Pro to extract above mentioned information. This script saves the extracted information in a file (.inst file),
which is supplied as an input (see Figure 19). The saved results have the following information. For each
function in the binary, we extract:

. Arguments and local variables for the function
. All the functions called by the function
. All the PUSHed parameters for each of the called functions.

© Copyright DIAMONDS Consortium

Page : 320f 80

Version: 1.0
Date : 22.05.2013

. | i bl : . Fi
@D@M@M@S Deliverable ID: D5.WP3 2'[051;:3 : I;IS;IiC

Final Security Testing Tools

@ £ ﬁ IEI % Fa é ﬁ 3 Mo debugger A
— o
v

1'7:' Enter the file name where results will be saved E] I I
17 Furictions window o X|| X [F] DA Viewa | %[5 HexVie]

T —— =\ [— Save in; | _& by Compuiter a | \3 ¥ e M-
'l . — r

1) _init_proc Y S 05 (1)
i [|___emno_location] f ‘3 S WINEDRIVE (E:)
B _sprintf My Recent

¥ _connect Documents |[22) Shared Documents
\@_gmun_slarl_ J—
\@_gelen\" B
A"

1] _stincpy

Deskt

“{7|_toupper nptr Feen
\@_fgels
‘lﬂ memset N
\@_selilimel f/
‘@_Iibc_start_main My Documents
\@_hluns
‘[,T‘_n_read "__"
\@_gellimeufday :‘j‘g
.’ifﬂ_flee My Computer
Yo

|| _sigaction JL d
g L = : : 1
‘ﬂ:_nnzl::;e b e ‘) File nae: b
Hl—! -0 “ g T 1 ; "Th
N _fseek @aGLIBC_2_0 by Metwark Save as type: *inst v ’
o | |
Difelose ledialMustBeAP ; “Redial s re————————— =T ST
\[ﬂ}_memcpy ;s push 20h

1] _stilen HL| push edx ; format
‘[,T‘_h_fopen ; size push eax 5 stream
Yo hens) _L4 ; ptr call _fprintf

Figure 19: Generating Arg/Var information from IDA Pro

2.4.1.3 Transforming Native Assembly Code into REIL- A Higher Level Intermediate
Language

IDA Pro creates an .idb file that contains the result of analysis performed by IDA Pro e.g. control flow graph
of the functions and call graph of the application. However, all such results are applicable to assembly code
and assembly code is still very low-level to be used for other complex analysis such as dataflow. Therefore,
the native assembly code is needed to be transformed into some other intermediate language with less
complex syntax.

BinNavi [4] is a framework for analysing assembly code. In order to perform more complex dataflow analysis,
it also provides an intermediate language called REIL (reverse engineering intermediate language) [5]. REIL
consists of only 17 instructions with three address code (TAC) format. Every native assembly instruction is
converted to equivalent REIL instructions and the dataflow analysis is performed on this REIL code. In order
to obtain the REIL code, we need to import the IDA Pro generated .idb file into BinNavi. BinNavi provides a
GUI to do so (see Figure 20).

Once the file is imported into BinNawvi, we can access various information about the binary by using APIs
provided by BinNavi. These APIs are available via Jython programming language. As a result, all of the
LISTT is written in Python/Jython.

© Copyright DIAMONDS Consortium

Page : 330f 80

Version: 1.0
Date : 22.05.2013

E\Ul/mm@m\@/% Deliverable ID: D5.WP3 i’ﬁ:g ES;IiC

27 Modules in Database Binnavil'
Filter

Final Security Testing Tools

L Tl |

Marme Description Wiews Creation Date
00p,EXE 18 May 27, 2011 10:31:03 AM
OOPAFTaY. exe 11 Jun 9, 2011 101 7:67 Al
| locpArrayChar exe 11 Sep 8, 2011 1:26:30 PM
| testiF2.exe San 0l 21737 il

CEIEUENAN @ Select IDB files for importing
simpleAs
| reps.exe) Available Expoters: |c++Expungr(B|nExpnm |'|
¢ |dpointer3
| |painterd. of
55 ghlAssig

Previous directaries: |E:1.testElinnavi |v|

SelectIDBE Files Selected IDBE Files
Laak In: ||j metso |V| E .
[kDA S0 idh —
ibtiffa. [libPyv2 s0.idh
hff?tpdfiex D pes_B.idh —
motivate,
mupdf.exa
of exe
TPServe
Al proftpd
| [serenity.e
higet
corehittp
File Narne: | |
Files af Type: ||DA Pro Database File (idh) |v|

cancel | | Import

Figure 20: Importing .IDB file into BinNavi

2.4.1.4 LiSTT Overview and Usage

The main module LiSTT (component 4 in Figure 18) consists of seweral python files. The main file that
computes the taint flow is “taint-analysis.py”. The computation begins with computing the call graph slice for
a given pair (Tsrc, Tdst) of taint source and destination functions. The following class represents a slice
(Figure 21).

CSlice
__init__(self SliceSrc, SliceDst, allEdges sNode dNode, commonRoot)
getTSrcMode(self)
getTDstNode(self)
getDOTStriself)
getCommonRoot(self)

getChildren{self,node)
getParents(self node)

Figure 21: Slice Class in LiSTT

Once all the class slices are calculated, LiSTT starts dataflow calculation using abstract interpretation based
framework. There are three different dataflow analysis takes place within LiSTT. A typical diagram of various
components of such analysis is illustrated in Figure 22.

© Copyright DIAMONDS Consortium

Page : 340f 80

Version: 1.0

Final Security Testing Tools Date : 22.05.2013

~LZ ~ . .
Deliverable ID: D5.WP3 Status : Final

DIANONDS Confid - Pubiic

SkeletonLattice(lLattice) SkeletonTransformationProvidet(ITransformationProvider) SkeletonLatticeElementilLatticeElement) h Summary{obiect)

combine(self states) __init_ (self,gvarlUsed=None) __init_ (self) |__init__(self,name)

transform{self node currentState influencingState) equalsiself rhs) get_arg_dep(self,num)
lessThan(self ths) get_mem_depiself nurm)

get_ret(self)
get_name(self)

Figure 22: Various classes that represent dataflow analysisin LiSTT

The Summary class is used to represent the “function summary” that is used while performing
interprocedural dataflow analysis.

There is a configuration file called “configTaint.py” wherein we can set various parameters for performing a
particular analysis. The most important ones are:

set the logging level

1. loglevel = DEBUG, INFO, WARNING, ERROR, CRITICAL
function name that is used for reading tainted data

2. taintFuncN = 'TSrc'

which argument of taint function introduces taint

3.taintArgN = 1

the taint may be introduced by the return value of the taint src function

4. taintIsReturn = False
this value will be set to true for returned taint

The LISTT also has a module to calculate buffer overflow prone (BOP) functions [2]. This module is launched
from command-line by typing the following command:

|C:\> jython BOPFunctionRecognition.py

The output of the above command is a list of functions that are prone to buffer overflow. The list is saved as
“pickle” object with .pkl extension. This file is used as one of the parameters in main taint flow computation.

The LiSTT's taint flow computation is launched from command-line with the following parameters:
1. name of the .inst file (as described in section 2.X.1.1),

2. name of the pickle file containing BOP functions,

3. name of the folder where slices are saved (e.g. result).

The main command to launch the LISTT taint flow analysis is:

|C:\> jython taint-analysis.py

The final results are saved in the result folder.
A typical example of the call graph based slice computed by LiSTT is shown in Figure 23.

© Copyright DIAMONDS Consortium

../../../
../../../

Page : 350f 80

Version: 1.0

Final Security Testing Tools Date : 22.05.2013

Deliverable ID: D5.WP3 Status : Final

@\Dﬁm @Mﬁ@ Confid : Public

Figure 23: A taint flow slice as computed by LiSTT. TScr=|j_fgets; TDst= j_strcat

The LiSTT also provides the fine-grained information about “How and where the taint flow occurred. For the
above example, LiSTT provides the following information:

Taint Src: j fgets -> common root: sub 401164 -> Taint sink:

Jj_strcat
At 0x4011fe03L by:
*V 1 VvV 4 *V_ 2 eax
At 0x4011d603L by:
VvV 4 *V 2 eax

2.4.1.5 Black-Box Based Model Inference Assisted Evolutionary Fuzzing For
Vulnerability Detection
The approach described in WP2 [1], is implemented in the form of a tool named KameleonFuzz (KF).

KameleonFuzz automatically detects Type-1 and Type-2 Cross Site Scripting (XSS) in Web Application.
Figure 24 illustrates the main architecture of KF.

© Copyright DIAMONDS Consortium

Page : 36 0f 80

Version: 1.0

Final Security Testing Tools Date : 22.05.2013

= — Deliverable ID: D5.WP3 Status : Final
@U@M@M@@ Confid : Public
Request . HTTP Request
< | > Selenium >
an'ée lgc)anuzz . Web
- mg el in erer.wce rowser Application
- taint annotation Parse Tree (SUT)
- evolutionary fuzzing (DOMm) - .g. Chrome HTTP Reply
- ey

Figure 24: KameleonFuzz Tool Architecture

KF is implemented as collection of many python modules for implementing various functionalities as
described in [1]. At a high level, KF send request to SUT through browser. In order to parse the HTTP
response, it makes use of selenium binding for Python [6]. In this way, KF can generate the DOM tree of the
HTTP response (output from the SUT). After getting DOM tree, KF invokes the modules to compute other
information like, string matching, URI and forms recognition (for model inference), taint flow etc. It is this
DOM parse tree that is used for fuzzing various parameters by traversing its nodes. In the following sections,
we provide details on these major components of KF.

24151 High Level View of KF's Main Components

As show in Figure 25, KF first infers a model representing the observable control flow of the application. This
model is then annotated for approximate obsenable data flows (potential reflections). Finally, the ability of
attackers to exert control on such reflections is explored via Ewolutionary Fuzzing.

Figure 25: KameleonFuzz: High Level Approach Flow

Configuration
Two files control the configuration of KF:
e main config file: ./config/webgoat/config.xml
oSUT interfaces
oAuthentication credentials
oReset method
oLimits for Inference, Annotation and Fuzzing
oParser to use (Browser in the XSS case)
e attack grammar file: ./KameleonFuzz/Grammar/HTTP/XSS/attack_grammar.kfgrammar

Reset Script
It is specific to each system. For WebGoat, killing the process and restarting it is sufficient. For Gruyere, it is

also necessary to restore the database in its initial state.

© Copyright DIAMONDS Consortium

Page : 370f 80

Version: 1.0

Final Security Testing Tools Date : 22.05.2013

Deliverable ID: D5.WP3 Status : Final

@\Dﬁm @Mﬁ@ Confid : Public

Running KameleonFuzz
For each step, the command to use is the same:

|$ python3.2 ./KameleonFuzz.py —--config webgoat

24152 Model Inference

In order to learn the model of the SUT, KF implements model inference step in the form of a state-aware
crawler. As aforementioned, after getting the DOM tree, KF extracts the URI/Forms from this tree to find
other reachable pages. In this way, KF generates a FSM with input/output as observed while accessing each

newly discovered page.
The tester has to identify which parameters are Nonces (i.e., they hawe two different values for the same
input sequence submitted to the application). This is the case for cookies, anti-CSRF token, view-states...

The names of such parameters have to be entered in the config.xml file.

At the end of this step, KF sawves the inferred model in a pickle file, in order to reuse it later, and in an SVG
image (see Figure 26), for a human tester to analyse it. In fact, we state that this output is of great help for a
human penetration tester.

Figure 26: Extract of the Inferred Model for POwnMe

24153 Approximate Data Flow Annotation

The inferred model is fed to the approximate data flow annotation module. This module will infer the taint
between previously sent input parameters value and the current output.

Since many pattern matching computations are performed, this process has to be efficient. Thus we make
use of a naive substring matching algorithm, because we assume that input values will not significantly be
transformed. The tester has to indicate what is the minimal length of such substrings to be considered. In

many of our experiments, we arbitrarily choose 6 characters.

The annotated model is also sawved to a pickle file, to awoid recomputing this when willing to perform several
fuzzing sessions afterwards. Each reflection is also savwed to a separate image file, such as the one
displayed in Figure 27.

© Copyright DIAMONDS Consortium

Page : 38o0f 80

Version: 1.0
Date : 22.05.2013

=SS — Deliverable ID: D5.WP3 Fi
DIAMONDS e Confid . PUblc

fuzzed_input_block_27_ 1

Final Security Testing Tools

,flreﬂeclion is from this input parameter
\ to this concrete output

b |
reflection_block_27__ 3

3.
message2 =2_e_g_a_s_sem

1.
message2=2_e_g_a_s_sem [FREFLECTED¥*]

i
| 2.
| there exists a path

\from this node to this node

Figure 27: Example of Reflection Annotation (this is an extract of the pOwn model, with only
transitions related to the reflection)

24154 Evolutionary Fuzzing

Genetic Algorithm
The Ewlutionary Fuzzing step is driven by a Genetic Algorithm (see Figure 28).
In the config.xml configuration file, various GA parameters can be controlled:
e Population size
mutation rate
elitism
e stopping conditions: number of generations, number of found faults, fitness to obtain...

Attack Grammar

Malicious inputs sent during the Fuzzing step are built using the attack grammar. It is wlnerability name
specific (that is necessary to write another attack grammar to target SQL injection instead of XSS).

In Figure 29, we list an extract of the attack grammar for XSS Fuzzing.

© Copyright DIAMONDS Consortium

Page : 39of 80

Version: 1.0

Final Security Testing Tools Date : 22.05.2013

. | i bl : . Fi
@D@M@M@S Deliverable ID: D5.WP3 2'[051;:3 : ESglliC

1 > Creating the first generation: n individuals
2 for [€ [l.n] do

3 Population[l] ¢ generatelndividual (Model,AttackGrammar)

¢ end for

5 > Evolving the population
6 repeat

T for all I in Population do

8 SUT Reset

a9 Submit I to SUT

10 > precise taint data flow inference
11 Compute FITNESS(I,Model,0) + VERDICT(I, O, TreePatterns)

12 end for

13 CROSSOVER: f fittest individuals according to attack grammar to
produce m Children

14 for all C in Children do

15 MUTATE(C, AttackGrammar)

18 end for

17 Population + (n —m) fittest parents + m Children

18 until stopCondition

Figure 28: Genetic Algorithm

xss_1in structure = (xss outside tag | xss in attribute value |
Xss_1in css)

xss outside tag = (Js _script | img onerror)

img onerror = "<img src=x onerror=" [0:1] (Js quote) Js payload
[0:1] (Js_gquote) "™ >"

js_quote = ("\"" | "'")

Jjs payload = Jjs pay 4
Js pay 4 = "alert (" [3:6] (text simple number) ")"

Figure 29: Extract of the Attack Grammar

XSS Exploits
When fuzzing stops, KF outputs to its log file one exploit for each distinct found XSS.
Below we illustrate an extract of such an output for the WebGoat application.

- source: {'node to id': 14, 'node from id': 28,
'fuzzed param': 'startDate'}

- dest: {'node to id': 14, 'node from id': 28, 'fuzzed param':
'startDate'}

- param name: startDate

- individual fuzzed value:

Figure 30: extract of the found XSS exploit summary

© Copyright DIAMONDS Consortium

Page : 40of 80

Version: 1.0
Date : 22.05.2013

= — Deliverable ID: D5.WP3 Fi
DIAMONDS e Confid . PUblc

Final Security Testing Tools

2.4.2 Application to Case Studies

2.4.2.1 Metso DNA Application Analysis

INP Grenoble analysed Metso NDA software binaries by using its LISTT tool. There are 3 binaries provided
by Metso, each have more than 1000 functions. LISTT found buffer overflow prone functions and reported
them to Metso. INP Grenoble Iso analysed the binaries to detect wilnerable paths that could lead to buffer
overflow wilnerabilities. With the limited analysis information, LiSTT found no wlnerable paths in the Metso
main binary of the application.

2.4.2.2 Gemalto TSM Analysis

INP Grenoble performed a black-box analysis (for the existence of cross site scripting XSS wlnerability) on
the Gemalto TSM application by using ewlutionary fuzzing approach. Due to the limited accessibility to the
application, full code coverage was not achieved. Therefore, within the scope of analysed portion of the
application, no XSS wlnerability was found. It was also noted that the application was written by taking
security into the consideration.

2.4.3 Advances during DIAMONDS

The whole of the LiSTT tool was deweloped during DIAMONDS project. The underlying techniques were
advanced and extended during the project. Similarly, the KameleonFuzz tool came to its full development
during the project. The underlying techniques got matured during the project.

© Copyright DIAMONDS Consortium

Page : 410f 80

Version: 1.0
Date : 22.05.2013

@\Ul/mM@m\@/S Deliverable ID: D5.WP3 ?;?;:3 ||:Di33|ic

2.5 CODENOMICON DEFENSICS

Final Security Testing Tools

2.5.1 Description of the Tool

Since 2001, Codenomicon DEFENSICS™ test platform has been applying a wide range of fuzzing
techniques to provide preemptive security testing for network equipment manufacturers, operators,
consumer electronics companies, enterprises and governmental organizations. The latest release of the test
generation engine is Defensics 10, launched in November 2011.

Codenomicon Defensics performs fuzzing, or fuzz testing. In fuzzing, an automated testing tool has to be
first capable of creating valid message structures and message sequences. Using these behavioural models
it then alters the behaviour to generate millions and millions of nearly-valid messages that systematically
anomalise some parts of the information exchange to test the target system for robustness.

The Figure 31 shows the specification-based approach, where the model is built from protocol interface
specifications. The model is pre-built by Codenomicon, but the user can edit both message sequences and
the actual messages sent and received by the tool.

i Change configuration
Test case generator | Used sequence | Registration sequence

Used sequence
IM INVITE-REFER-BYE session

INVITE-BYE call INVITE sip:iuser@l0.10.1.12 5IP/2.0

IM5 INVITE-BYE Call sequence @read only) il wia: SIP/2.0/UDP 10.10.2.23:5060;hranch
IM5 INVITE-BYE Call with extra requests :| Content-Length: 334
IM5 Registration An INVITE-BYE sequence starting with Contact: <=sip:local@l0.l0.2.23:5060; trs

Call-ID: 12313213211@10.10.1.12

INVITE request with error response outgoing INVITE message. After receiving an Content-Type: application/sd
INVITE-BYE call 200 response, a BYE request is sent i Cseq: 1 ImI‘II'E PP P
INVITE-BYE call with extra requests i A From: "user"<sip:local@l0.10.2.23>; tag=
INVITE-CANCEL call When running against a SIP User Agent, the | 5, Forwards: 70
INVITE-CANCEL proxy call UA should be in autoanswer mode. - To: <sip:defau] t@lo.10. 1 17=
INVITE-PRACK—-BYE call [a] User-Agent: SIP Test Suite
INVITE-PRACK-CANCEL call i veo
MESSAGE request Suite sut :| o=- 3357045830 3357046830 IN IP4 10.10.
NOTIFY request s=SIPSuite
OPTIONS request =| | c=éN0IP4 10,10,1.12

=t
PUBLISH request INVITE request A a=direction:active

REGISTER request
SUBSCRIBE request with NOTIFY response|

m=audioc 49152 RTP/AVP 3 97 98 8 0 101
a=rtpmap:3 GSM/ 8000
a=rtpmap:97 jLEC/B000
5| a=rtpmap:®8 iLEC,/B000
repeat 2| a=fmtp:98 mode=20
i a=rtpmap:8 PCMA/BODO
I a=rtpmap:0 PCMU/S000
Provisional response a=rtpmap:101 telephone-event/B000

a=Tmtp:101 0-11,1%5

OK response I | [»]

-

| |54 Edit sequence... | | [34 Edit message... |
ptions... :

Selected sequence file

Jopt/Codenomicon/d3-sip-server-4.6.0 ftesttool fuser/invite-bye.seq

| @ Help for selecting sequence and messages || @ Sequence file editing help | | & ok || 3 cancel |

Figure 31. Specification-based approach

© Copyright DIAMONDS Consortium

Page : 420of 80

Version: 1.0
Date : 22.05.2013

Status : Final
Confid : Public

Final Security Testing Tools

Deliverable ID: D5.WP3

After model parameters are chosen, the test generator creates hundreds of thousands of test cases:

Defensics'3

File Suites Groups Ulilities Help

>n ECENAEOLIR0E]

("All_|"® SIP-UAS [finished] |

‘f Settings | Execution | Resuits | ‘ @ GUI Help u @ Suite Help H - Opliﬂns‘

4 Basic configurati : Test groups

7 Test cases ‘| [E invite-bye (selectable from 22 sequences) = '
(@ Test case gener; b UDP

(B Authentication | valid }

(B Registration ¢ |2 request-invite

Ci;] CODENOMICON defensics:

)
g;ggmg : ¢ R’ Equestflnwe ‘
: T reguest
@ Logaing : & element (8)
® Capture o P& request-line

% Instrumentation Test group
> Run control

Suite configurati -

o P& message-header
o P& message-body

¢ 2] Frequest-ack]

P SHMF Instrument] - * B recuest-ack request-ack
¢ ¥ request
element SIP.UDP.request-ack
d o ¥ recuest-line L | Test cases 297168
: o g message-header N)
| & B) request-bye = Start index 436946
.. End index 734113
Test cases
I 7. |SIP.UDP.mq|msl—inulle,SIP.uDP.requesl—atk = Sub test groups
| # Element Anomaly request-ack 436946 - 734113 297168 cases
[UDP.request-invite.request-invite. request.elem... [buili-in =
2|2 UDP.request-invite.request-invite. reguest.elem... |built-in = R
1B UDF.request-invita.request-invite requast.elem... |built-in For licansed use. Distribution prohibired.
& UDF.request-invite.requesi-invite.request.elem... [ouili-in Copyright(c) Codenomicon Ltd. 2002-2011. All rights reserved
iz UDP.request-invite.request-invite. request.elem... built-in
11l UDP.request-invite.request-invite.reguest.elem... |buil-in
[z UDF.request-invite. request-invite request. elem...|built-in
: UDF.request-invite. requesi-invite.request. elem..._|buili-in
UDP.request-invite.request-invite request.elem... [built-in
] UDP.request-invite.request-invite request.elem... [buili-in
1 UDP.request-invite.request-invite. request. elem wilt-in
2 UDF.request-invite. requesi-invite. request. elem...|buili-in
|l UDP. request-invite.requesi-imvite.request. elam.. |buili-in
(14 UDP.request-invite.requesi-invite.request.elem... |buili-in
(15 UDP.request-invite.request-invite. reguest.elem... |built-in
/|18 UDF.request-invite. racuest-imvita. recjuest. slem... |built-in
|7 UDF.request-invite.requesi-invite.request.elem... [ouili-in
T i|[18 UDFP.request-invite.request-invite.request.elem... |bui-in ~
@ Help | D
Local Pc

Figure 32. Test-case generation

In specification-based fuzzing, the tool user only needs to configure the required information about test
target, as shown in the Figure 33:

Defensics 10
File Suites Groups Utilities Help

QDEREICICRFALIE TS

All [O SIP-UAS [idle] |

) [a]] ol

/ 1 Basic configuration < | Basic configuration : @ GUI Help L@
Basic configuration | callee SIP URE |-| :
Authenticati :
i Ax M en "Ea fon :| Caller SIP URL:
#§ Registration z
2 Proxy ‘| Contact URI override:

ﬂ 2 Interoperability Via address override:

:B 3 Advanced configuration | | Local address override:

4 | TCP Qutput timeout (ms):

Defensics 10 Fl

| :
| B y

| | B

| B

| - 3

|

9 4 Instrumentation

Continue sequence after timeout main - 1. Basic configu

‘ 5 Test cases

B 6 Test run :
't_j? Results 4

&j B Remediation

Accepted status codes: IZI]X

Figure 33. Test target information

The flow user inte

Welzome to the Defensics
successfully running Defen

1. Basic configuration

© Copyright DIAMONDS Consortium

Page : 430f 80

Version: 1.0
Date : 22.05.2013

@\Ul/mM@m\@/S Deliverable ID: D5.WP3 ?;?;:3 ||:Di33|ic

The Figure 34 shows the steps of using Defensics to create a protocol model from captured network traffic.
This is called template based fuzzing, as the model is created from a template file or network capture.

Final Security Testing Tools

Step 1. Load PCAP file with network traffic and select the protocol you want to test:
© Packot capture lmport and sulte anch - Stop 172 U

Wernt lbe

Specily the poap Me which contains the protecol session you wish to test. Aoomm poag’ stands for Lbpcap Hie
Note, that an external poap o paed converter is roguired, As def auk the TShark, which comes with Wireshark, is used

PCAP file 2:\Tenplpenk 2 poap 5] Lrovess,

Protocol to test

» Configue.,]

Pich the protecol exchange Lo test feom the exchanges identilied from the poso fle. W How Lo pch the right nessage udunqa?]‘

SR over bep 16,2 235, 221443 3 192,168, 2.96:14773 (4 messages sent, 2 mecsages received) Select 1 ok legt

AEOGM SMNEMAILSLOTSME NETLOGON over odp 192, 168 2. 76138 > 192.163,295 295: 138 (| mevsades serd, O messages 1 tha server side enthy o

OUPS over U 192,168 1111631 > 192,168 265, 255431 (1 mmccanns cont, () mecca)ss recatved) the cherk side ertty

DNS over udp 192.160,2.98:5353 > > 22¢ 53 (1 mossages sent, O messages received)

s Ol 192,164, 3. L0 5383 > B3 (1 mesagns cark, O masea0ns raceved)

UNCNOWN over Udp 192.168,2 561283 255:1947 (1 messages sank, O messages raceived)
STP ower th 00:51:4343:09:78 »> 01:80:¢2:00:00:00 (5 messages sent, 0 messages received) Selact # messagns we

SR over oth 00:50:56:¥.0000¢ > 00:24:08:ab 432 (6 messages sert, S messages receved) e by dats o #

NEDGM-SMB MAILSLOT-SMB_NETLOGON ever oth 00: 5023111035 > IFITALMINIT (§ mesiages sert, O messages received. messages ore teotusl

=) 25 Server (nght)

CUFS aver eth 00 1¢:29:47:11:2¢ > MALIIH2 (1 sort, N

DS over oth 000029946545 55 01:00:50:00:00: 15 (1 messages serd, 0 medsages cocennd) bl Y
DS over oth 00;0¢: 298804 01 5> 01 :00:50:00:00:fb (1 mescsges sert, 0 messaoes recervnd) () Fextual
LE® over otk 00; 10:0b:d3: b6 100 > FFFFFFAFF6 6 (1 mmssagns sant, 0 messages recetved)

< 3

(wet> | © | Qcoxe || @ rep

Figure 34. Step 1. Load PCAP file

Step 2: Protocol model and thousands of tests are automatically created, and the user only needs to select
what elements from the protocol he wants to test:

Al O Generi(2) [Peabad] Ganark: [kSe]

Ganeral | Se4UNGS | Reskts [] ® [5G]Eatdmes
/ Baix coobgaaten | Test gouws r— —

A Test cases

L) pern2 (solectabie from & saquences)
B Scorrg =

e A #1712

QY irstrumacation

M suke corfigrabon & dvoyen Index —=1712 =
= & drsyen Group GensCs datagram. Lps-Message datagr am. datag am A 81
z —p Anomaly Overflow of 129 octets
& Locstion Category CHE-L CWE-L & 18 QUE: E-03) CUE-633 Overflow
R Infomstion Hash OMEREEGSBCIR0N21S

& Moo
= () messaesoquence
) dgicatomessage
) repastmessage

Scores Attack Modffier = +%0 CVSS/BS = 10,

s test 358 i customzabie I GUI by changng the anomsly

— Messages
Garere rwssage sequrce repad s

| D CUpS-MESSAgE [wm vty

3018 3\ W00 w00 <D0y DO OO\ OO NR DO DO OO O 00 L0 OO O\ 00N OOk DO OO\ OO (D0 DO WO WO 0000
{not showing 97 anomaly octets)

oy f/codest.codenomicon, 0cat 531 rnters/hpt “Support room’” “Del MIP1815V" "Generic POSISCrpt Printer Foomatic/Postscr pt (recomensndad)” b
o U G O S R A AT so - il e
1685 Dty am CLDs-messa0s, datagram dat gy s AR bon
1686 Oty am Cups-messae. datagram datagram LRI buR-n

Figure 35. Step 2. Select protocol elements
Test execution and reporting work the same way as with specification-based fuzzers.

Defensics uses Extended Backus-Naur form with Java extensions as the core notation for the behavioural
model. It is a proprietary extended BNF variant that allows for message exchange descriptions.

An example of Codenomicon proprietary Extended BNF (EBNF):

TLS ClientHello:
client-hello = Handshake: {
msg_type: { HandshakeType.client hello },

© Copyright DIAMONDS Consortium

Page : 44 0of 80

Version: 1.0

Final Security Testing Tools Date : 22.05.2013

Deliverable ID: D5.WP3 Status : Final

@\Dﬁm @Mﬁ@ Confid : Public

body: { @sid-len @cs-len @cm-len (
'hs:client-version protocol-version
'hs:client-random Random
.session id length: !sid-len:target uint8
.session id: !sid-len:source (!hs:client-session-id SessionlID)
.cipher suites length: !cs-len:target uintlé6
!cs-len:source !'hs:client-cipher-suite !cipher-suite:cipher-type cipher-suites
.compression methods length: !cm-len:target uint8
!cm-len:source compression-methods
RFC4366: TLS Extensions
.extensions: ()

)}

The Extended BNF is used to model the syntax of messages in both binary and textual protocols. Message
sequence-level behaviour is also modelled using BNF.

The way Extended BNF works on the message sequence level is that it uses rules to append the model with
callbacks to Java code. Rules are used to:

. Perform I/O operations like connect, send, and receive, on message sequence level.

. Calculate fields like lengths, checksums, and sequence numbers, inside protocol messages.

To provide the end user with lots of ready-made test cases - that is, anomalised messages and message
sequences - the users of the Codenomicon test tools may also specify the used message sequences and/or
message content themselves. For this purpose a proprietary XML based sequence file is used. An example
sequence file for Session Initiation Protocol (SIP) based interfaces may look like the following:

<sequences>
<!-- SIP dialog definitions -->
<sequence name="used-dialog" setting="user-sequence-file">
<description name="PUBLISH request">A sequence sending a PUBLISH request
and expecting a success response.</description>

<send name="publish-request" type="sip-message" description="PUBLISH request">
<content file="sip-publish.txx" format="text"/>

<store attribute="call-id">...</store>
</send>
<recv name="publish-response-ok" type="sip-message" description="OK response">
<match attribute="call-id">!sip:callld S$publish-request:call-id</match>
</recv>
</sequence>
</sequences>

The actual content of the send message "publish-request” is specified in a separate file as raw data. The
sequence file specifies that the "call-id" must match the corresponding header line in the received message.
Note that the real sequence specifications contain a lot more details than included here, as the SIP protocol
is rather complex.

As seen in a tool screenshot below, the users can launch editors to edit both the sequence models and the
message structures. The models are edited as text.

© Copyright DIAMONDS Consortium

Page : 450f 80

Version: 1.0
Date : 22.05.2013

. | i bl : . Fi
ED@M@M@% Deliverable ID: D5.WP3 2'[051;:3 : ES;liC

(i) Changelconfiguration [
Test case generator Used sequence rReqislratinn sequence \

Used sequence
IM INVITE-REFER-BYE session

Final Security Testing Tools

h " INVITE-BYE call INVITE sip:user@10.10.1.12 SIP/2.0
IMS INVITE-BYE Call sequence (read only) Via: SIP/2.0/UDP 10.10.Z.23:5060;branch
IM5 INVITE-BYE Call with extra requests Content-Length: 334
IMS Registration An INVITE-BYE sequence starting with Contact: <sip:local@l0.10.2.23:5080;tre

Cal1-ID: 12313215211@10.10.1.1%2

INVITE request with error response outgoing INVITE message. After receiving an Content—Type: applicarionsdp
INVITE-BYE call 200 response, a BYE request is sent CSeq: 1 INVITE

INVITE-BYE call with extra requests } } From: "user'ssip:local@l0.10.2.23>;tag=
INVITE-CANCEL call When unning against a SIP User Agent, the MWax-Forwards: 70

INVITE-CANCEL proxy call UA should be in autoanswer mode. o To: <sip:default@l0.10.1.12>
INVITE-PRACK -BYE call [] User-Agent: SIP Test Suite
INVITE-PRACK-CANCEL call v=0

MESSAGE request Suite suT o=- 3357045830 3367046830 IN IP4 10.10.
NOTIFY request s=SIPSuite

OPTIONS request © E:éNOIP" 10.10.1.12

PUBLISH request INVITE request a=direction:active
REGISTER request m=audio 49152 RTP/AVP 3 97 98 8 0 101
SUBSCRIBE request with NOTIFY response| a=rtpmap:3 GSM/BO00

a=rtpmap:S87 iLBC/ 8000
a=rrpmap:98 1LBC/8000

repeat a=fntp:98 mode=20

a=rtpmap:8 PCMA/B000

a=rtpmap:0 PCHMU/S000

Provisional response a=rtpmap: 101 telephone-event/8000
a=fmtp:101 0-11,16

OK response

I D
=/ Edit sequence... i Edit message...

Selected sequence file

Jopt/Codenomicon/d3 -sip-server-4. 6.0 /testtoolfuser/invite-bye. seq

‘ & Help for selecting sequence and messages H & Sequence file editing help | | @ 0Ok H E:] Cancel |

[4]
[=]

Figure 36. Model-editing in Defensics

2.5.2 Application to Case Studies
2.5.2.1 Industrial Automation Case Study

Codenomicon conducted testing with Defensics Traffic Capture Fuzzer against the Metso setup at OUSPG.

The focus was to compare the functionality of Defensics and Network Hoowver(tm). The same identical traffic
sample was presented to both fuzzers as seed for the test case creation.

The first test runs with Hoover had resulted a system crash in Metso setup. We imported the same traffic in
un-anomalised form to Defensics TCF to see if anomalised test cases from another fuzzer would catch the
same wilnerability and cause the same failure mode in the target system.

The test results concluded that Defensics TCF had formed a test case from the same seed input material
that caused a crash, and the same byte string was found from the output of both fuzzers.

While this comparison was limited to one wlnerability and two fuzzers only, the conclusions are not
conclusive. Howewer, based on the results from our proof-of-concept test run we can say that it is possible to
trigger same wlnerabilities with two different non-modelling fuzzers, neither of which are aware of the
protocol structure or traffic type at all.

2.5.2.2 Telecommunication Case Study

The work with Ericsson was done under an NDA. Results can be found from Ericsson's case study report.

© Copyright DIAMONDS Consortium

Page : 46 of 80

Version: 1.0

Final Security Testing Tools Date : 22.05.2013

Deliverable ID: D5.WP3 Status : Final

@\DI@M @m\@/g Confid : Public

2.5.3 Advances during DIAMONDS

Codenomicon Defensics 10 was implemented during Diamonds, including improved monitoring capabilities
with SCTP protocol. Defensics 10 included also improved Ul that supports better the actual test flow. Traffic
Capture Fuzzer (TCF) was dewveloped and used in the case studies. TCF SDK dewelopment was also done
within Diamonds. TCF SDK improves usability of plain SDK by adding possibility for tester to add own code
to the test to improve interoperability. Defensics engine was also improved and it is now able to generate
more test cases which leads to the better test coverage.

Codenomicon also implemented Web Application Test Suite tool to enable web application testing. Web
Application Test Suite supports multiple formats over HTTP: HTML, URL encoded POSTs, JSON and
multipart mime. It does not replace HTTP Server Suite, but complements it. Use HTTP Sener Suite to tests
HTTP server and Web Application Test Suite to ensure the robustness of the web application running behind
the HTTP sener.

© Copyright DIAMONDS Consortium

Page : 47 of 80

Version: 1.0
Date : 22.05.2013

= — Deliverable ID: D5.WP3 Fi
DIAMONDS e Confid . PUblc

2.6 SYMBOLIC PASSIVE TESTING TOOL (TESTSYM-P) (IT)

TestSym-P [26] is a prototype model implemented by Institut Telecom (IT) that aims at passively testing an
Implementation under test (IUT) to werify if it respects the protocol requirements represented as IOSTS
property. The prototype model is conceived to check whether the IUT collected traces respect the protocol
requirements and if it does not satisfy we check if any attack patterns are satisfied based on that a verdict
Pass/Fail/Inconclusive/Attack-Pass [23] is given.

Final Security Testing Tools

2.6.1 Description of the Tool

Figure 37 illustrates the components of the TestSym-P prototype model. It has three different inputs
(coloured blue):

A. The real communication traces represented in .txt format (captured using Wireshark or any trace
analyser for instance).

B. The Guard conditions associated with each state of the symbolic executions.

C. The symbolic traces collected from the symbolic execution of the IOSTS property (as defined in
D5.WP2), Traces(SE(M)) (i.e. the property/attack that is to be werified on the IUT traces) and the
number of states involved.

The prototype model is written in SQL. SQL is used to process the huge amount of data contained in the
captured traces. We specifically used its efficiency to perform our trace slicing approach. The brief
description of each module in the model is described below:

Raw Trace Guard;g%rl'g:lmons ymbolic trace & state
of SE(M) details
I

(.txt)| Input Input Input

y

Trace Parsing

dbo.InputoExcel
\
Trace Slicing

dbo.slices dbo.guard-conditions |dbo.Eval-input

Y Y

Evaluation Engine

Output

\ J
Verdict

Figure 37: Architecture of TestSym-P prototype model.

© Copyright DIAMONDS Consortium

Page : 48 0of 80

Version: 1.0

Final Security Testing Tools Date : 22.05.2013

. | i bl : . Fi
@D@M@M@S Deliverable ID: D5.WP3 2'[051;:3 : I;IS;IiC

A.

0]

Input 1: Raw trace input (Wireshark collected traces or from any trace analyser)

Trace parsing: The raw text file (.txt) obtained from the real Bluetooth framework is given
as input to our tool. The tool converts the text file format .txt to a tabular file format,
dbo.InputToExcel with the required Bluetooth specific fields. This table is the database
table for SQL as shown in Figure 38.

¢ Microsoft $OL Server Management Studic T T T T | e
File Edit View Query Debug Tools Window Community Help
DNewaquey | |3 |5 H I |E

3 | master - ¥ Exeate b v 33 i [5 | ¢ AL

Object Explorer ~ & % | '5QLQueryd.sql - PAT10005\..app (58))| SQLQuery&.sql - PATI0005\...app (57)) | SQLQueryd.sql - PATL0005\...p (55))° | SQLQuery2.sql - PAT10005\... app (54)) E
Connect~ | @7 =2 = 6il FrOM [DCo_bluetootn].[dbo].[InputToExcel]

= |4 PATI0005\PRAMILA (SQL Server 10.0.5
) 3 Databases
[System Databases
= [DCo_bluetooth
[Database Diagrams
£ [Tables
[System Tables < i =

1 dboEval Input [Resuts |Gy Messages

g ::D‘Iswitgind\mm 1D ., Method BD_ADDR DEV_LOCAL_NAME
= oo e ranceagt|| 111 | HCE_CONNECT_RecuEsT 0026 TE4ATTOC
= dbo, Slices - 2 2 HCE_CONNECT_COMPLETE 00:26:7E:4A:77:DC
= dbo.Testinput 3 3 HCC_RESET
[Views 4 4 HCE_COMMAND_COMPLETE
[Synonyms 5 5 HCC_READ_BUFFER_SIZE
= [Programmability 3 6 HCE_COMMAND_COMPLETE
= [Stored Procedures 7 7 HCC_HOST_BUFFER_SIZE
[3 System Stored Proce| || 8 8 HCE_COMMAND_COMPLETE

=] dbo.CREATEDATAF | & 9 HCC_WRITE_PAGE_TIMEOUT
[=] dbo.Evaluation_Gen|| 10 10 HCE_COMMAND_COMPLETE

(] dbo.FIND_RESULT ||| 11 11 HCC_READ_PAGE_TIMEOUT
(3 Functions 12 12 HCE_COMMAND_COMPLETE
3 Database Triggers 13 13 HCC_SET_EVENT_MASK

3 Assemblies 14 14 HCE_COMMAND_COMPLETE
3 Types 15 15 HCC_READ_LOCAL_VERSION
L3 Rules 18 16 HCE_COMMAND_COMPLETE

(3 Defaults

17 17 HCC_READ_LOCAL_FEATURES
(23 Service Broker

18 18 HCE_COMMAND_COMPLETE

j zsz; 15 139 HCC_READ_BD_ADDR
4 Pramila 20 20 HCE_COMMAND_COMPLETE
£ Security 21 21 HCC_READ_ING_MODE
@ Server Objects 22 22 HCE_COMMAND_COMPLETE
3 Replication 23 23 HCC_READ_DEF_ERR_DATA.
3 Management 24 24 HCE_COMMAND_COMPLETE

25 25 HCC_READ_ING_RESP_TRA.

Figure 38: Snapshot of trace parsing (dbo.InputToExcel) table.

(if)

Trace Slicing: This module uses the SQL table, dbo.InputToExcel as input and updates
another table dbo.slices. A stored procedure dbo.Find-Result is written to populate the
dbo.slices using dbo.InputToExcel table. The trace slicing algorithm according to our
approach (as defined in D5.WP2) is implemented in this SQL procedure. The given trace
file is sliced based on certain parameters of the Bluetooth protocol. This slice put together
constitutes the real trace. Figure 39 shows the snapshot of the trace slicing table output
obtained.

© Copyright DIAMONDS Consortium

Page : 49 of 80

Version: 1.0

Final Security Testing Tools Date : 22.05.2013

= — Deliverable ID: D5.WP3 Fi
DIAMONDS e Confid . PUblc

SQLQuery1U.sql - PAT10005\..A... (59)) | SQLQuenyd.sal - PATI0005\...app (58)) | SQLQuenisql - PATL0005\.. 3pp (57)) | SQLQueryd.sq - PATLO003\...p (53))° T
1i [tk Script for SelectTopNRows command from SSMS & %&s&/ -
2/ SELECT TGP 1000000 [Datapart tetal
3 , [Controlpart_W]
4 » [CutPut]
5 » [Sym_Values]
& ; [Conc_Values]
7 , [Substitution]
8 ; [8lices]
9 FROM [DCo_bluetooth]. [dbo]. [Slices]
Fl m ,
[Resuks _j Messages
Datapart_teta Controlpart_W QutPut Sym_Values Conc_Values Substitution Slices
1 [D0026:7E4ATIDC | HCE_CONNECT_REQU BD_ADDR: BD_ADDRO BD_ADDR : 00:26:7E:4A:77.DC BD_ADDRO=0026:. HCE_CONNECT_REQUEST(BD_ADDF
2 HCC_RESET HCE_COM BD_ADDR: BD_ADDR0 BD_ADDR BD_ADDRD = HCC_RESET(BD_ADDR :) HCE_COMM

Figure 39: Snapshot of the trace slicing (dbo.slices) table.

(iii) Final Evaluation: The evaluation scheme defined in D5.WP2 is implemented in the
evaluation engine module. Inputs to this module are: the trace slice table, dbo.Slices, a
table comprising the symbolic traces, Trace(SE(M)), total number of states inwlved in the
symbolic execution of the IOSTS and a table with the set of associated guard-conditions G
for each state of the symbolic execution. Then, the verdicts Pass/Fail/lnconclusive/Attack -
Pass/Attack-Fail are obtained for each trace slices. Based on these verdicts the final
verdict of the tested property on the trace evaluated. Figure 40 shows the snapshot of the
output obtained.

SQLQuaryS sal- PATI0OOS\..pp (54) * SQIQuery2al - PATL0005\-.app (53) | 5QLQuen sl PATIUNGS\..2pp 62) - %
*** Script for SelectTopNRows command from SSMS ***sv* —
AEH':LECT TOP 1000000 [Datapazt_tetal o
3 [Controlpart W]
4 [OutPut] |
5§ [Sym Values] 3
€ , [Conc_Values]
, [Substitution]
, [Slices]
FROM [DCo_bluetooth] . [dbo] . [Slices]
‘ i D
(= Resdts |[]3 Messages
Datapart_teta Controlpart_W OutPut Sym_Values Conc_Values Substtution Slices
1 0% C HCE_CONNECT_REGUESTHCEC.. FAILL BD_ADDR: BD_ADDRD BD_ADDR:00:26.. BD_ADDRO=00:267E.. HCE_CONNECT_REQUEST(BD_ADDR - 00:26:7E 4A:77:0C) HCE_CONN
2 HCC_RESET HCE_COMMAND_CO INCONCLUSIVE BD_ADDR: BD_ADDRO BD_ADDR BD_ADDRO = HCC_RESET(BD_ADDR :) HCE_COMMAND_COMPLETE(BD_ADDR :} H

Figure 40: Snapshot of the verdicts obtained.

B.

Input 2: Guard-Conditions table of SE(M)
The guard conditions associated with each state of SE(M) are created as a table in SQL,

dbo.Guard-conditions. Sample of the guard-conditions table in SE(M) (defined in D5.WP2) is
shown in Figure 41.

© Copyright DIAMONDS Consortium

Page : 50 of 80

Version: 1.0
Date : 22.05.2013

. | i bl : . Fi
@D@M@[ﬂ@@ Deliverable ID: D5.WP3 2'[051;:3 : ES;liC

Final Security Testing Tools

Object Explorer -1 x PAT10005\PRAMIL...Guard_Conditions| SQLQueryl.sql - PAT10005....app (52))
Connect~ | 2§ 3 ‘3 1D GuardCondition
5] [jj PAT10005\PRAMILA (5QL Server 10.0.550(| » True
= [3 Databases 2 ALLL
[l System Databases 3 NULL
= || DCo_bluetooth 4 ML
[Database Diagrams 5 AL
= 1 Tables
[System Tables [bdaddr0 = £5.bdaddr
= dbo.Eval_Input 7 bdaddr0 = =5.bdaddr
=1 dbo.Guard_Conditions 8 bdaddrd = s5.bdaddr
= dbolnputTobxcel g NULL
= dbo.@W_TMCE_TABLE 10 ML
=1 dbo.Slices " AL
=] dbo. Testlnput
£ Views 12 bdaddr0 = s5.bdaddr
3 Synonyms 13 ML
3 Programmability 14 NLEL
3 Service Broker 15 AL
4 ztmase 6 bedaddrd = s4.bdaddr
i Security 17 beladdr0 = s4.bdaddr
| Pramila
3 Security 18 bdaddrd = s4.bdaddr
[Server Objects 19 bdaddrd = s4.bdaddr
[Replication * NLELL MNLEL
[Management

Figure 41: Snapshot of the guard-conditions table.

C. Input 3: Symbolic trace and state details

The symbolic execution state details like Symbolic trace sequence, number of states, guard-condition

number, type (property or attack) are provided as one of the input to the prototype tool for evaluation. A
snapshot of the table inputs is shown in Figure 42.

Object Explorer v % % PAT10005\PRAMILA... - dbo.Eval_Input| PAT10005\PRAMIL...Guard_Conditions |~ SQLQueryl.sql - PAT10005\....app (52)) -
Connect~ | 33 33 3 jin} Seqs GuardCondRowNr NrOfStates AttackSeq SeqType
=] l!" PAT10005\PRAMILA (SQL Server 10,0.550(¥ hee_chng_local_name() hee_inguiry() hee_inquiry_complete() hec_create_connection(... 1,2,3,4,5,16,17,18,9,10,2,19,14,15 15 [1} P1
= [Databases 2 hee_chng_local_name() hee_inguiry () hee_chng_local_name() hee_inquiry_complete(... 1,2,3,4,4,5,6,7,8,9,10,11,12,13,14,15 17 1 Al
[System Databases T 777 7] AL AL AL rn

= |J DCo bluetoath
3 Database Diagrams
= [J Tables
3 System Tables
= dbo.Eval_Input
= dbe.Guard_Cenditions
1 dbolnputToExcel
=1 dbo.RAW_TRACE_TABLE
=1 dbo.Slices
=1 dbo.Testlnput
3 Views
3 Synonyms
L3 Programmability
[Service Broker
3 Storage
3 Security
|3 Pramila
3 Security
3 Server Objects
3 Replication
3 Management

EEEEBE®

Figure 42: Snapshot of the Symbolic state details table.

© Copyright DIAMONDS Consortium

Page : 510f 80

Version: 1.0
Date : 22.05.2013

= — Deliverable ID: D5.WP3 Fi
DIAMONDS e Confid . PUblc

2.6.1.1 Scalability of TestSym-P

The symbolic passive testing tool was also applied to monitor seweral SIP (Session Initiation Protocol)
properties and attack patterns. For the experiments, SIP traces were obtained from two different sources:

(A) Traces were provided by Alcatel-Lucent and extracted from the interfaces of the PoC server on top of the
Application Server [24]. (B) Traces were also obtained from SIPp [25]. SIPp, provided by the Hewlett-
Packard Company, is an Open Source SIP implementation of a test system conforming to the IMS as well as
a testing tool and traffic generator for the SIP protocol.

Final Security Testing Tools

We actually experimented our approach to large traces (> 10® packets) to study the scalability of our
approach. Promising results have already been obtained and will be used to compare our work with other
data-centric approaches.

2.6.2 Application to Case Studies

IT applied the presented technique in Automotive case study provided by the German partners (DCo). In this
case study, the connection of the car's entertainment system with the driver's mobile phone via Bluetooth
was monitored. The traces obtained were collected and monitored using the symbolic passive testing
approach (defined in D5.WP2). Connections via Bluetooth are open to foreign devices and thus, provide an
attack point. Hence in this case study, IT applied the passive testing technique to monitor the functional
behaviour and the attack scenario.

2.6.3 Advances during DIAMONDS

The TestSym-P tool has been fully implemented during the Diamonds project. This tool can be used to
passively test any message-based protocol like SIP, HTTP, etc.

2.6.3.1 Conclusions and Future work

Currently, the TestSym-P tool is efficient enough to monitor behavioural properties and attack patterns for
the Bluetooth protocol. Our prototype and the sample files used for the experiments can be found at
http://www-public.it-sudparis.eu/_mouttapp/TestSym.html. Though the current work deals with offline
monitoring, as future works it would be interesting to support online monitoring or runtime monitoring. The
approach can be applied to monitor any type of message-based protocols.

© Copyright DIAMONDS Consortium

DIAHONDS

Final Security Testing Tools

Deliverable ID: D5.WP3

Page : 52of 80

Version: 1.0

Date : 22.05.2013
Status : Final

Confid : Public

2.7 MONTIMAGE MONITORING TOOL (MONTIMAGE)

2.7.1 Description of the Tool

MMT (Montimage Monitoring Tool) is a monitoring solution that combines: data capture; filtering and storage;
ewvents extraction and statistics collection; and, traffic analysis and reporting. It provides network, application,
flow and user lewel \isibility. Through its real-time and historical views, MMT facilitates network security and
performance monitoring and operation troubleshooting. MMTs rules engine can correlate network and

application events in order to detect operational, security and performance incidents.

In the context of the DIAMONDS project, Montimage dewloped MMT-Security that is a functional and
security analysis tool (part of MMT) that erifies application or protocol network traffic traces against a set of
MMT-Security properties. MMT-Security properties can be either “Security rules” or “Attacks” as described by

the following:

e A Security rule describes the expected functional or security behaviour of the application or protocol

under-test. The non-respect of the MMT-Security property indicates an abnormal behaviour.

e An Attack describes a malicious behaviour whether it is an attack model, a winerability or a
misbehaviour. Here, the respect of the MMT-Security property indicates the detection of an abnormal

behaviour that might imply the occurrence of an attack.

MMT-Security can be executed against a pre-recorded trace file or live on a network interface using real time

analysis.

2.7.1.1 MMT-Security architecture

-
ua

Statistics generation

MMT-Operator

f

Events, parameters, & verdict

collection

Views
Definitions

Configuration

Configuration

Extracted Events & Parameters

Rules verdicts notification

Events & Parameters extraction

Rules engine and Verdict notification

f

Classification

MMT-Extract

f

Packet Processing

A

Protocol
plugins

f

A

Events Analysis

MMT-Sec

i

Defined
Rules Base

Events Correlation

Figure 43. MMT-Security Architecture

© Copyright DIAMONDS Consortium

Page : 53of 80

Version: 1.0
Date : 22.05.2013

= — Deliverable ID: D5.WP3 Fi
DIAMONDS e Confid . PUblc

MMT-Security is composed of three complementary, but independent, modules as depicted in Figure 43.

e MMT-Extract is the core packet processing module. It is a C library that analyses network traffic
using Deep Packet/Flow Inspection (DPI/DFI) techniques in order to extract hundreds of network and
application based ewents, including: protocols field values, network and application QoS parameters
and KPIs. MMT-Extract incorporates a plugin architecture for the addition of new protocols and a
public API for integrating third party probes.

e MMT-Security is a security analysis engine based on MMT-Security properties described in D2.WP2
section 1.4.1. MMT-Security analyses and correlates network and application ewvents to detect
operational and security incidents. For each occurrence of a security property, MMT-Security allows
to detect whether it was respected or violated.

e MMT-Operator is a visualization application for MMT-Security. It allows collecting and aggregating
security incidents, and presents them via a graphical user interface (e.g., report tables). MMT-
Operator is customizable: the user is able to define new views or customize the large list of
predefined ones. With its generic connector, MMT-Operator can be integrated with third party traffic
probes.

Final Security Testing Tools

2.7.1.2 MMT-Security features

Granular traffic analysis capabilities: MMT allows parsing a wide range of protocols and applications and
to extract various network and application based traffic performance indicators. The extraction is powered by
a plugin architecture for the addition of new protocols and applications.

Application classification: prior to extracting protocol or application attributes, MMT uses DPI techniques
for application identification and classification. This is essential when analysing applications that use non-
standard port numbers (e.g. P2P, Skype).

Rule engine: that allows the detection of complex sequence of events that conventional monitoring does not
detect. This is used to monitor: i) access control policies (e.g. authorized users are authenticated prior to
using a critical business application); ii) anomaly or attacks (e.g. excessive login attempts on the application
sener); iii) performance (e.g. identification of VoIP calls with QoS parameters exceeding acceptable quality
thresholds); etc.

Configurable reports: MMT traffic reports and charts can be configured by the user. The user can edit pre-
configured reports and create new ones. Different chart types and graphs can be used including: pie,
histograms, time charts, stacked area charts, sequence charts, tables, hierarchical tables, etc.).

Multi-platform solution: MMT is available on Windows and Linux based distributions. It can be installed as
software on commaodity hardware or optimized for integration with dedicated probes.

Modular solution: MMT is a modular solution composed of three components: MMT-Extract for the traffic
processing and data decoding; MMT-Sec for rules analysis; and MMT-Operator for data aggregation,
correlation and reporting. It is possible to integrate MMT-Extract and MMT-Sec in third party traffic probes
and to connect MMT-Operator with existing systems.

2.7.2 Application to Case Studies

The MMT tool has been applied to three case studies:
e Radio protocols case study provided by Thales Communication & Security

e Smartcards and the mobile NFC ecosystem case study provided by Gemalto
e Automotive case study provided by Dornier Consulting

© Copyright DIAMONDS Consortium

Page : 54 of 80
. . . Version: 1.0
Final Security Testing Tools Date - 22.05.2013
= o Deliverable ID: D5.WP3 Status : Final
@D@M@M@% Confid : Public
Case study [Offline/Online [Number of | Number of analysed traces | Results
designed (including traffic or server
properties logs
Radio Both 19 17 No security
protocols flaws
case study detected +
All attacks
implemented
and applied
are detected
Smartcards Offline 9 3 No security
and the flaws
mobile NFC detected
ecosystem
case study
Automotive Offline 3 2 No security
case study flaws
detected

More details are presented in D5.WP1 deliverable.

2.7.3

The MMT tool has been fully implemented in the context of Diamonds project. It is the result of previous
research work in the network monitoring field and relies on the multi-domain security requirements identified
in the context of Diamonds case studies. The main idea of MMT is that its main core tool can be easily
extended (based on a plugin architecture) to fit any new constraints of any communicating system under

test.

Advances during DIAMONDS

© Copyright DIAMONDS Consortium

Page : 55o0f 80

Version: 1.0
Date : 22.05.2013

= — Deliverable ID: D5.WP3 Fi
DIAMONDS e Confid . PUblc

2.8 MALWASM (ITRUST)

Final Security Testing Tools

2.8.1 Description of the Tool

malwasm is an open source tool designed by itrust consulting with the intention to help reverse engineers
understand what a binary does.
Presently we can identify 2 different types of malware analysis.

e Static analysis;

e Dynamic analysis.

Static analysis consists of obtaining the assembly code of an application in order to understand how the
application works. However today, the majority of malware use obfuscation to hide their activities. For
example, the windows registries name modified by a malware can be hidden using compression or
encryption.

The dynamic analysis consists of executing a program step-by-step, instruction-by-instruction. In this case,
the analysis can take a long time. If the analyst goes too far, he has no way to go back and the only solution
is to restart the analysis from the beginning.

The malwasm tool, designed by itrust consulting, incorporates both static and dynamic analysis; enabling
reverse engineers to perform a rigorous malware analysis.

An online demo of the tool is available at http://malwasm.com.

2.8.1.1 How itworks
The following sub-chapters describes in steps, how the tool works.

Step 1
malwasm starts a virtual machine using VirtualBox;

Step 2

The second step inwlves executing a malware sample in order to obtain a database of information. The
sample is executed in a dedicated virtual environment in order to record all interaction with the logical or
physical parts of the machine where it is executed. As the execution of the sample could lead to a system
crash, the sample is executed in an isolated sandbox, which records system behaviour in real-time and in a
secure manner.

Step 3
A PinTool application logs all the activity (and partial activity) of the binary.

Step 4
All the activity of the binary is stored in a postgres database.

Step 5

The recorded data (as a raw report of the sample behaviour) is displayed in a smart web interface which
allows step by step monitoring of the sample behaviour and its interaction with the system environment (data
flows, input/output analysis).

© Copyright DIAMONDS Consortium

http://malwasm.com/

Final Security Testing Tools

Deliverable ID: D5.WP3

DIAMONDS

Page : 56 of 80

Version: 1.0
Date : 22.05.2013

Status : Final
Confid : Public

2.8.1.2 Features
o Offline program debugging;
e Timeline monitoring of the malware execution;
o Register and flag states;
e Stack/heap/data values;
e Multiple options following the dump;
e Supports x86 architecture;
e Supports multithreads.

‘ Behaviour Analysis
at Medium Level

=
% b

Behaviour Analysis dgta'ls

at low Level - Levewf &

One wax analxsis

C timeline /
————— .

Figure 44: malwasm features

© Copyright DIAMONDS Consortium

Page : 57 0of 80

Version: 1.0
Date : 22.05.2013

Deliverable ID: D5.WP3 i?ﬁﬁﬁ Eﬂ&'ic

Final Security Testing Tools

2.8.1.3 Interface
malwasm uses a web browser to display the information concerning the execution of the malware sample.
v Google B fy e~

mages + @ Information~ [Miscellaneous v+ # Outlinev ¢ Resizev ¥ Toolsv BViewSourcev [1]Options v

% @ 127.0.0.1:5000 =1

@pDisablev L Cookiesv 4 CSSv []Forms~

2 Wil Pl TR e TR —

unnamedimageEntry Point CPU Regl
100 | DxD040120b | call Ox402f8f | call demo y 1784 EAX: 0040a0at
tailcall demo.exe:.text+0x069e LLLeE DT
e ECX: 0012fecc
EDX: 00414058
. EDI: 0268130
0x000 jEE:, mx:mmw[ﬁpmm ESI: LLELLifd
N EBP: 0012fedc
0x000)4018ec pushes.l e EE
0x000!)4018ed mov esi, ecx . cemom -
0x000000e4 0x004018 mov byte pir [esi+0xc], 0x0 e ATE s
0x000000e8 0x00401 test eax, eax
0x000000ea | 0x00401 inz 0x40195a jmp demo. v 145
0x000000ec | 0x00401 call 0x402abc call demo yPoint+0x12b1

0x000000£1 0x004018
0x0D0D0D00ES 0x00401
0x0000!

mov dword pir [esi+0x8], eax
mov ecx, dword ptr [eax+0x6¢c]
0x00401%02 mov dword pir [esi], ecx

0x000000£9 | DxD0401904 | mov ecx, dword pir [eax+Ox68]

0x0000 0x00401%07 mov dword pir [esi+0x4], ecx

0x000000 0x0040190a | mov ecx, dword pir [esi]

0x00000101 | 0x0040130c | cmp ecx, dword pir [0x40a810]

0x00000107 | 0x00401312 | jz 0x401926 imp dema. y 11b

0x0000011b | 0x00401%26 | mov eax, dword pir [esi+0x4] d | Show all

0x0000011e | Dx00401%25 | cmp eax, dword pir [Ox40a4d0] 0012fecd | 00403626 | demo.exe:

0x00000124 | 0x004019 Jz 0x401947 imp demo, yF 13¢ 001Zfecd | 00000000 |

0x0000013c | 0x00401347 | mov eax, dword ptr [esi+0x8] 0012fect | 0040a0aB | ..E.

0x000001 0x0040194a | testbyte pir [eax+0x70], 0x2 0012fecc | 0012££08 |

0x000001 0x00401%4e | jnz 0x401964 imp demo. vl 159 - 0012fed0 | 0040200 | ..E. E
i — - 0012feds | Sccléads | Ej.\

Dump: 00010000 - 00011000 < | I'Show as: [ﬂVORD | | Number group by line: 4 . || Download | Show all 001zfedd | fffffife

00010000 | 003a003d 003d003a 003a003a 0000005c | =.:. :.=. :.:. \... 33;;::; 33:;;:;? éé"“;‘ue:

00010010 | 004c0041 0055004c 00450053 00530052 A.L. L.U. S.E. R. htiatmen || Sesmrem || oot

00010020 | 00520050 0046004f 004c004% 003d0045 | P.R. O.F. I.L. E.= et || Coemm

00010030 | 003a0043 00D44005c DO63006E 00640075 | € \.D. o.c. m.m. e || DEED

00010040 | 0060065 00730074 00610020 0064006e | e.n. t.s. .a. n.d. e || oo || coes

00010050 | 00530020 00740065 00630074 0067006e LS. e.t. t.i. n.g. oo12fers | 02681es0 | . om. -

00010060 | 005c0073 006cD041 DO20006c 00730055 [s.\. A.1. 1. . O.s.

00010070 [00720065 _00000NTI 00500041 00440050 | e r = AD DD = [o U

Figure 45: malwasm web-interface

© Copyright DIAMONDS Consortium

Page : 58 of 80

Version: 1.0

Final Security Testing Tools Date : 22.05.2013

Deliverable ID: D5.WP3 Status : Final

@%M@m\l@/g Confid : Public

2.8.1.4 Innovation

The malwasm tool can be classified as a rewverse engineering tool and is based on known products such as
cuckoo or PinTool. However, malwasm provides at least 2 major innovations compared to similar tools.
Figure 46 below shows the general architecture of malwasm.

Data of code
Execution

Web Interface of Analysis

Figure 46: malwasm architecture

malwasm uses Cuckoo Toolbox features to run the code sample in a dedicated and disposable environment.
In this environment, malwasm uses PinTool (Intel software) to record the behaviour of the sample execution
into a dedicated database. The web interface of malwasm allows replaying the sample execution step by
step, forwards and backwards, and monitoring system activities during the execution of the sample.

The main innovation of malwasm is to bring together the advantages provided by the Cuckoo ToolBox, i.e.
the disposable environment, the collection of data, the advantages of the low level analysis provided by
PinTool, and also to awoid the limits of, on one hand, a common debugger which can only work one way
(forward); and on the other hand the limits of Cuckoo ToolBox which provides only an ovenview of the system
behaviour.

Additionally, the malwasm tool provides a web interface to replay step by step the sample execution and to
monitor the main parameters of system behaviour according to displayed sample instructions (displayed in
byte, word or dword).

2.8.1.5 Exploitation
The tool is used during the creation of malware analysis articles, which itrust publicly shares on the website
malware.lu. The articles can be used by reverse engineers, students, security researchers, etc. in order to

better understand how malware works.
The website also contains a repository of malware, which authorised members can download and analyse,

using the malwasm tool.

© Copyright DIAMONDS Consortium

Page : 59 of 80

Version: 1.0
Date : 22.05.2013

=SS — Deliverable ID: D5.WP3 Fi
DIAMONDS e Confid . PUblc

2.8.1.6 Support

malwasm is an open source tool, developed and maintained by the ethical hacking team of itrust consulting.
It can be downloaded at http://code.google.com/p/malwasm/.

An installation guide can be found at http://code.goodle.com/p/malwasm/wiki/README. It contains
instructions on how to install malwasm and on how to install support software such as Cuckoo or PinTool.

Final Security Testing Tools

2.8.2 Application to Case Studies
2.8.2.1 Gemalto case study
For the creation of itrust’s smartcards case study, malwasm was used to debug our developments in order to

gain a greater understanding of how smartcards work. The malwasm tool allowed itrust’s reverse engineers
to develop a piece of malware which successfully exploited weaknesses in the smartcard’s design.

2.8.3 Advances during DIAMONDS

© Copyright DIAMONDS Consortium

http://code.google.com/p/malwasm/
http://code.google.com/p/malwasm/wiki/README

Page : 60 of 80

Version: 1.0

Final Security Testing Tools Date : 22.05.2013

Deliverable ID: D5.WP3 Status : Final

@\Dﬁm @Dﬂﬁ% Confid : Public

2.9 TRICK TESTER (ITRUST)

2.9.1 Description of the Tool

TRICK Tester is a platform used for penetration (intrusion) testing. It contains all the main software tools to
test web applications and network systems like Web Seners.

The inwlvement of itrust in research and dewelopment projects allows the company to gain a deep
understanding of the software tools and optimise their usage. Additionally, the organisation’s participation in
research and dewelopment projects has led itrust to dewvelop its own innovative security testing tools which
are often used during the winerability tests.

2.9.1.1 TRICK Tester support

TRICK tester consists of an ISO image based on the Linux distribution Ubuntu. This ISO image can be burnt
on DVD or can be copied on a USB flash drive (this solution provides a more reactive operating system) in
order to be launched as a live operating system. In this case, hard disks can be easily analysed without data
to be written on the running system. The tool can also be installed permanently on a hard disk which allows
more reactivity of the operating system and storage of data during the tests.

New releases of TRICK Tester are only provided as a new ISO image and not through the Linux update
manager. It is recommended to have a different location to store data apart from the operating system
partition. This ensures that data is not lost when installing a new version of TRICK Tester.

2.9.1.2 Launching TRICK Tester

After a successful login, documentation such as manuals and guides are available on the Desktop. The
documentation contains:

e The penetration methodology;
o The different intrusion attacks (e.g. SQL injections, XSS) explanations and examples;
e How to use the different intrusion software tools that are installed.

© Copyright DIAMONDS Consortium

Page : 61of 80

Version: 1.0

Final Security Testing Tools Date : 22.05.2013

= — Deliverable ID: D5.WP3 Fi
DIAMONDS e Confid . PUblc

2.9.1.3 Security criteria
TRICK tester methodology aims at detecting security issues on the three main criteria of information security:

Confidentiality: TRICK tester enables to check that data transmitted by or stored on web
applications is correctly protected against diwlgation. For example, sensitive data of a web
application accessed by a user must be transmitted through a protected protocol (e.g. HTTPS);
Integrity: TRICK tester helps to check that data stored by web application cannot be modified by
unauthorised users. This can be done for example by wverifying that it is not possible to modify data
by SQL injection on the database;

Availability: TRICK tester includes software to test Denial of Senice.

2.9.1.4 Testresults

Results
outputs

found during intrusion tests have to be checked on their level of impact (rating). TRICK Tester
(e.g. results of web application scanning) enable auditors to list the winerabilities to be corrected.

This list is sorted considering the level of impact of the winerability. Four lewvels exist:

Level Description

o000 Recommendations requiring an immediate action, for example in case of a known
vulnerability, to avoid an inacceptable risk.

00 Recommendations requiring a prompt action to avoid a high risk or to prevent a
certification

o0 Recommendations requiring a dedicated action to re-establish best practices, to
reduce a medium risk or to increase compliance

o Recommendations requiring a dedicated action useful for improving security and to

reduce rather low risk

2.9.1.5 Exploitation and Dissemination
TRICK tester can be sold to customers wanting to automate security testing for example when making

internal

audit. TRICK tester could then be sold as following, providing:
Training to customers for the use of the Live DVD and its tools;

Support as making new releases new \ersion of the Live DVD, including new software;
Help to choose and apply the relevant security checks on the customer’s information system.

© Copyright DIAMONDS Consortium

DIAHONDS

Final Security Testing Tools

Deliverable ID: D5.WP3

Page : 62 of 80

Version: 1.0
Date : 22.05.2013

Status : Final
Confid : Public

2.9.1.6 List of TRICK Tester tools

Tool Type Description
Nexpose Application vulnerability Capable to scan a system for known vulnerabilities
scanner
OpenVAS Application vulnerability Tool to scan a system for vulnerabilities
scanner
Fast-track Application vulnerability This tool contains multiple tools with the target to
scanner and exploiter check vulnerabilities on a network and to exploit
the vulnerabilities
Metasploit Application vulnerability a tool for developing and executing exploit code
scanner and exploiter against a remote target machine
WeBcoo Backdoor Web Backdoor Cookie Script-kit
Mantra Browser Browser developed by OWASP especially for web
application security testing
Dpscan CMS scanner Scans the Drupal CMS for vulnerabilities
JoomlaScan CMS scanner Scans Joomla CMS for vulnerabilities
Plecost CMS Scanner Scans the WordPress CMS for finger information
WPScan CMS Scanner WordPress CMS vulnerability scanner

InstantClient

Database connector

Client software that connects to Oracle databases

dirbuster Folder structure scanner | Tool that brut forces file and folder names of a web
server using a given list of file names

findmyhash.py Hash cracker Python script that tries to crack different types of
hashes using free online services

HttPrint Information gathering A web server fingerprinting tool that retrieves data
of a web server.

POf Information gathering Passive finger information gathering of an
operating system

Maltego Information gathering Capable to sniff relations between entities on the
network

Wireshark Information gathering Tool to capture communications received and sent
over a network interface

Volatility / Memory analysis Dumps the volatile memory of a system to analyse

Volatilitux it

SIPVicious Network audit Tool to audit SIP based VOIP systems

Hostmap Network discovery Hostname and virtual host discovery tool

NetBScanner Network scanner Scans computers and IP’s of a given range

Scapy Packet manipulator Tool capable of modifying OSI level 2 Ethernet

packets, to alter requests and responses

© Copyright DIAMONDS Consortium

Page : 63of 80

: : : Version: 1.0
Final Security Testing Tools Date - 22.05.2013
= o Deliverable ID: D5.WP3 Status : Final

@D@M@M@@ Confid : Public

Tool Type Description

Rainbowcrack Password Cracker Break hash using rainbow tables

Pdfid.py / pdf- PDF file parser Parses PDF files to scan for malicious code that

parser.py represents a malware

nmap / Zenmap Port Scan Tools used to scan ports on a target IP or ranges
of IP’s, can be extended with plugins to gather
other data.

Burp Proxy Tool with multiple possibilities: web application
scanner, spider, intruder, proxy...

spkproxy Proxy Spike Proxy

WebScarab Proxy Tool used as proxy capable of intercepting and
altering HTTP and HTTPS requests and
responses of browsers (and spider, intruder...)

binwalk Reverse engineering Tool to analyse firmware images and other binary
blobs

Edbdebugger Reverse engineering Cross platform application debugger and code

analyser

Firmware Mod Kit

Reverse engineering

It allows easy deconstruction and reconstruction
(debugging) of firmware images

Flare Reverse engineering Freeware Action Script decompiler

IDA Reverse engineering Disassembler and debugger tool

Jad Reverse engineering Java code decompiler

Metasm Reverse engineering Metasm is a cross-architecture assembler,
disassembler, compiler, linker and debugger

Sydbox Sandbox Tool to run programs in a sandbox based on
ptrace

SET Simulator Social Engineer Toolkit, capable to simulate
common human reactions to requests

SQLBrute SQL injection A tool for brute forcing data out of databases using
blind SQL injection vulnerabilities

sqlmap SQL injection Automatic SQL injection and database takeover
tool

sglninja SQL injection Automatic SQL injection and database takeover
tool

The mole SQL injection Command line tool for SQL injection exploitations

sslscan SSL scanner Extract security relevant details of a SSL

Hachoir Stream parser Allows to view and edit a binary stream

Pinktrace Tracer Traces data of a system process

© Copyright DIAMONDS Consortium

Page : 64 of 80

: : . Version: 1.0
Final Security Testing Tools Date - 22.05.2013
= o Deliverable ID: D5.WP3 Status : Final
@D@M@M@% Confid : Public
Tool Type Description
wfuzz Web application a tool designed to brute force web applications

vulnerability scanner

Grendel-Scan

Web application
vulnerability scanner

Tool used to scan a web application for
vulnerabilities

Nikto Web application Tool used to scan a web application for
vulnerability scanner vulnerabilities

Paros Web application Tool used to scan a web application for
vulnerability scanner vulnerabilities

w3af Web application Tool used to scan a web application for
vulnerability scanner vulnerabilities

GNUradio Wireless signal Capable of capturing and analysing wireless
processor signals

Aircrack-ng Wireless WPA-PSK Tool capable to audit wireless networks and

cracker

password cracker for WEP/WPA-PSK secured
wireless networks

2.9.2 Application to Case Studies

We applied TRICK tester for the security testing of the LASP use case. The LASP use case contains web
technologies (web senices) and a web sernver, which were the target of the security testing. The results of
the application of TRICK tester on the LASP use case can be found in the document
RAPO025_Intrusion_LAP_v1.0.docx.

This security testing report contains one recommendation considered as requiring a prompt action to awid a
high risk, and 9 recommendations requiring a dedicated action from relevant staff to awid inconsistencies
with documentation and non-compliance with what is expected, which represents a rather low risk.

2.9.3 Advances during DIAMONDS

© Copyright DIAMONDS Consortium

Page : 65of 80

Version: 1.0
Date : 22.05.2013

= — Deliverable ID: D5.WP3 Fi
DIAMONDS e Confid . PUblc

2.10 TTCN-3FUZZ TESTING

Final Security Testing Tools

2.10.1 Description of the Tool

TTworkbench is a highly integrated test dewelopment and execution platform for a wide range of industry
domains, including telecommunications, automotive and financial domains, produced by Testing
Technologies. TTworkbench supports the entire lifecycle of TTCN-3 based tests with textual and graphical
editors, a TTCN-3 to Java compiler, and a test execution management environment composed of graphical
tracing, debugging and reporting facilities for centralized and distributed test components. TTworkbench
supports, additionally to TTCN-3, different system modelling languages such as ASN.1, Google Protocol
Buffers, IDL, WSDL and XML.

The Testing and Test Control Notation wversion 3 (TTCN-3) is a standardized test specification language
created 10 years ago by the European Telecommunications Standards Institute (ETSI) that is becoming
more and more popular. Having it's root in the testing of telecommunications protocols, TTCN-3 spreads now
throughout a large number of domain such as Mobile Telecommunications: 3G, 3GPP LTE, WIMAX, GSM,
Internet protocols: SIP, IMS, IPv6, Intelligent transport systems (ITS), IOT — Internet Of Things (building
automation, smart metering, etc.), Automotive (AUTOSAR conformance and acceptance testing) and Smart
Cards.

These domains hawe integrated TTCN-3 into their own methods and processes. Security Testing, a rather
new domain for TTCN-3, provides a test method called Fuzzing. Fuzzing or Fuzz Testing is a testing
technique that monitors a system for exceptional behaviour (such as crashes, memory leaks) while
stimulating it with random, invalid or unexpected input data.

In order to be able to apply this method with using TTCN-3, there was a need to extend the standardized
language to support fuzz testing. Data Fuzzing with TTCN-3 is a combined effort of FOKUS Fraunhofer and
Testing Technologies in the context of the DIAMONDS project. For this reason the following extension of the
TTCN-3 standard was discussed.

210.1.1 TTCN-3 Core Language Extensions

TTCN-3 packages are intended to define additional TTCN-3 concepts, which are not mandatory as concepts
in the TTCN-3 core language or in its interfaces TRI and TCI, but which are optional as part of a package
which is suited for dedicated applications and/or usages of TTCN-3. The package presented is identified by
the package tag: "TTCN-3:2013 Security Testing" -to be used with modules complying with it.

This package defines the TTCN-3 means to define fuzz functions. Fuzzing operations are defined on basis of
the TTCN-3 type system and formally specified by special fuzz functions. The fuzzing itself (i.e. the
generation of fuzzed data) is done implicitly during the call of the send operation, or explicitly by calling
valueof. The repeated application of data fuzzing, i.e. generation of multiple variants to be sent, can be
realized via loop constructs. To allow deterministic test cases and to support repeatability we are using
pseudo randomness specified on basis of a constant seed. While simple dump random fuzzing often causes
poor results, intelligent application/protocol based fuzzing is much more powerful. To support
application/protocol based fuzz generators fuzz functions can also specified as external functions.

2.10.1.2 The fuzz function

Syntactical Structure
external fuzz function ExtFunctionIdentifier " (" [{ FormalValuePar [","]
} 1 ")" return Type
fuzz function FunctionIdentifier " (" [{ FormalValuePar [","] }] "™)" [
runs on ComponentType] return Type StatementBlock Semantic Description

© Copyright DIAMONDS Consortium

Page : 66 of 80

Version: 1.0
Date : 22.05.2013

=SS — Deliverable ID: D5.WP3 Fi
DIAMONDS e Confid . PUblc

The concept of a fuzz function is similar to the present ordinary functions, but their evaluation is delayed
until a specific value is selected via send or valueof operation (lazy evaluation). Fuzz functions may
declare formal (in) parameters, and must declare a return type. Apart from the time of evaluation fuzz
functions are treated as usual function resp. external functions, hence no extension of the runtime interfaces
is required.

Final Security Testing Tools

EXAMPLES:
external fuzz function fxz UnicodeUtf8ThreeCharMutator (
in charstring p paraml) return charstring;

fuzz function fz RandomSelect (
in RecordOfInteger list) return integer {
return list[float2int (rnd(getseed()) *
int2float (lengthof (list)))];
}

Generally, fuzz function instances are used to replace values of single template fields or to replace even
the entire contents of a template. Fuzz function instances may also be used in-line. A fuzz function
instance represents an element of a set of values (the function range), and can only occur in value templates
used like a native matching mechanism “instead of values” to define a list of values or templates.

EXAMPLES:
template myType mw myData := ({
fieldl := fxz UnicodeUtf8ThreeCharMutator (“abc”),
field2 := '12AB'O,
field3 := fz RandomSelect({ 1, 2, 3 })

}

A single value will be selected in the event of a sending operation or of the invocation of a valueof
operation.

EXAMPLES:
myPort.send (mw_myData) ;
myPort.send (fxz UnicodeUtf8ThreeCharMutator (“abc”));
var myType v _myVar := valueof (mw _myData) ;

Storing the selected value of a fuzz function for later use is possible within the sending operation using
the ‘-> value’ notation and via explicit invocation of the valueof operation.

EXAMPLES:

myPort.send (mw _myData) -> value v _myVar;
myPort.send (fxz UnicodeUtf8ThreeCharMutator (“abc”)) -> value v_myVar;
var myType v_myVar := valueof (mw myData);

Restrictions:
a) Fuzz functions shall not be used as incoming templates.
b) All formal parameters must have direction in.
¢) Fuzz functions must have a return type.

2.10.1.3 The seed

To allow repeatability of fuzzed test cases, an optional seed shall be used. There will be one seed per test
component. Two predefined functions will be introduced to set the seed and to read the current seed value of
the component calling the function. This value exposes the seed used by the predefined rnd function. When

© Copyright DIAMONDS Consortium

Page : 67 of 80

Version: 1.0

Final Security Testing Tools Date : 22.05.2013

Deliverable ID: D5.WP3 Status : Final

@\DI@M @Mﬁj@ Confid : Public

rnd is called, this always causes the seed to be implicitly set to the result of the rnd call. When rnd is called
with a seed parameter, this is equivalent to calling setseed with the same seed parameter before the rnd
call.

Syntactical Structure
setseed " (" in float initialSeed ")"
getseed " (" ")" return float

Semantic Description
The setseed predefined function allows setting of a special seed value per test component. With getseed

this value can be read out. Without a previous initialization a value calculated randomly will be used as seed.
Upon creation of a new test component a new seed will be created implicitly, if no seed is set via setseed.
EXAMPLES:

setseed (1.0);
var float v_f := getseed();

2.10.2 Application to Case Studies

The tool is used solely for the banking case study. More information on the case study related information
can be found in the corresponding DIAMONDS deliverable considering the use cases.

2.10.3 Advances during DIAMONDS
The tool has been fully developed within the DIAMONDS project.

© Copyright DIAMONDS Consortium

Page : 68 of 80
. . . Version: 1.0
Final Security Testing Tools Date - 22.05.2013
N — Deliverable ID: D5.WP3 Status : Final
@D@M@Dﬂ@@ Confid : Public

3. INTEGRATIONPLATFORM
3.1 TOOLS INTEGRATION FOR SECURITY TESTING

311

Integration into the Radio Protocol Framework

The following figure presents the security provider tools integration on the Radio Protocol Case Study. This
framework meets all the features expressed in the previous section.

'
1

1

Functional !
Requirements :

|

2

)

>

Security Test
Generation
Model

Security Test
Purposes

* Test — [l
Generation
bl ~

Y

OMNET+ Simulator

concrete input

Execution API

=5 wme
Trajectory
file >

-

MMT
Monitoring
Server

1
1
" -
i " ;
\ ® »«) montimage

f - TTCN3 —
= B | rscom

D
: 3
! > Security

Figure 47: Tools integration (tools provider view)

3.1.2

®,
°n

Tools Integration:

MONTIMAGE: Montimage worked on the integration of the monitoring tools toolset called MMT (for
Montimage Monitoring Tool) into the THALES validation framework. In addition of improvements of
the monitoring kernel engine, Montimage contribution on this case study is manifold:

o Parsing of the fields of the specific THALES protocol PDUS.

o Addition of online analysis of a previous offline analysis.

o Improvement of the expressiveness of the security properties notation.

o Verification of properties. Close collaboration with THALES team on the diagnosis of

the results.

@)
SMARTESTING: In addition to the improvement of the automatic test generation kernel engine,
Smartesting worked on the modelling of the system under test UML/OCL specification and scenarios
generation of nodes instantiations, movwements and traffic set up, including intrusive nodes, and
directives information provided to monitoring tools.

FSCOM : FSCOM worked on the TTCN specification of the application from behavioural information
provided by THALES on the protocol behaviour. FSCOM also modelled intrusive behaviours.
FSCOM worked with THALES Communications to define and integrate the control of intrusive nodes
within the simulation. Moreover, FSCOM monitored security properties described as TTCS charts, to
assume the matching between the TTCN specification and execution traces.

®,

« Institut Telecom : The contribution of Institut telecom is apart from the work of tools
interconnection and focused on the specification and design at routing lewvel of a distributed IDS
on routing protocol.

Further information on results of application of this test for security framework integration may be found in
the D5.WP5 deliverable related to the Radio protocol case Study.

© Copyright DIAMONDS Consortium

Page : 69 of 80

Version: 1.0
Date : 22.05.2013

=SS — Deliverable ID: D5.WP3 Fi
DIAMONDS e Confid . PUblc

3.2 TRACE MANAGEMENT PLATFORM FOR RISK-BASED SECURITY TESTING
(FHG FOKUS)

Today, increasingly complex systems are deweloped. Several dewelopers create different parts of a model
that represents the system under dewelopment. Each deweloper has specific views on the system with
respect to his role in the dewelopment process. For instance, the requirement engineer dewelops the
requirement model while the tester creates a test model on basis of the requirement and the system model.
There are specific constraints for creating and visualizing these models that are realized by different tools.
Howewer, complex systems are not just a bundle of loose models without relationships. For instance, the
purpose of test cases in the test model is to test system components in the system model and to validate
system requirements. To handle the diverse relationships between these models the concept of traceability
has been dewveloped [32] [8]. It was originally established for requirements engineering and is mostly used in
safety [9]. Traceability defines relationships between different models. Such a relationship consists of at least
a tuple of model elements and is called trace. For example, a trace can refer to a test case in a test model
and a requirement in a requirement model, meaning that the test case “validates” the realization of the
requirement. All traces constitute the trace model that can be used by analytic tools to evaluate such
“validate” relationships. Such analytic tools can traverse not only a single model but several models that are
connected via traces. In Diamonds we have introduced the idea of traceability to support risk-based security
testing. The idea behind risk-based security testing is to use artefacts from the risk-assessment to support
the security testing process. Thus we are interested in establishing traces from the risk assessment to the
testing artefacts. These traces need to be persistent and operational so that we can navigate along the
traces and use the traces for calculating the cowerage of risk assessment artefacts by testing. Figure 48
provides an ovenview owver the classes of artefacts that are to be related. The traceability links are given in
red and the tools (and their roles in the testing process) are outlined by the bubbles with dotted lines.

Final Security Testing Tools

Test Pattern:
Usage of unusual
behavior
sequences

&)

Messages are executed without
checking authentication

Accidents or collisio
warnings are not
received and processed
by the attacked ITS

Attacker may change
configuration without
authentification

[..]

Attacker

Figure 48: Traceability from risk assessment artefacts to test results

The simplest kind of traceability management is the management of untyped tracing. A trace may be created
between every kind of element in arbitrary models. It allows easily navigating between models and model
elements. It is not suitable for more advanced approaches of analytic tools because of the lack of semantic
information about the links and the corresponding traces. A more reasonable kind of tracing is typed tracing.
That requires the definition of a trace metamodel to restrict the traces to specific element types. This allows
analytic tools to use the semantic information given by the type of a trace for evaluating certain aspects of
the models and traces between them.

© Copyright DIAMONDS Consortium

Page : 70o0f 80

Version: 1.0
Date : 22.05.2013

= — Deliverable ID: D5.WP3 Fi
DIAMONDS e Confid . PUblc

The information of such a trace metamodel can be used by a lot of senices. For example, a cowerage
analysing senice can collect all tested components in a system model by selecting test cases in the test
model. Queries on the traced models may be more complex. For example, a likelihood analysing senice
should mark all possible threats in a risk diagram affecting system elements with a specified likelihood.

A traceability supporting tool must meet a set of requirements in order to enable the efficient use by
dewelopers. For that purpose, traceability management functions have to be integrated smoothly in the
accustomed tool landscape of the deweloper. It should allow facilely adding new senices and also
convenient usage of such senvices.

Final Security Testing Tools

3.2.1 Description of the Tool

The RiskTest trace management platform is based on a provisional version of the trace management tool
CReMal. It is integrated in the desktop development environment of the Eclipse workbench and runs with the
modelling tools Eclipse configuration in the versions JUNO and INDIGO. The trace management capabilities,
i.e. the creation of trace links, the navigation of trace links and the evaluation trace links, are restricted to a
set of integrated tools. These tools are the risk modelling tool CORAS?, the Eclipse UML modelling editor
Papyrus?3, the requirement modelling tool ProR, based on the Reqlf model, and the test managing tool
TTworkbench.

e CORAS has been used for security risk assessment,

e ProR, has been used for security requirements engineering and as a data base for the security test

pattern catalogue,
e Papyrus, has been used for security test specification and modelling
o TTworkbench. has been used for security test execution

3.2.1.1 Basic RiskTest Use Cases

The RiskTest trace management platform has been used to realize two high level uses cases. During the
security test development RiskTest has been used to create and maintain trace links between risk
assessment artefacts (i.e. wlnerabilities, threat scenarios, and treatment scenarios), test pattern and test
specification. The test deweloper starts with the risk assessment tools CORAS and identifies security test
objectives and security testing approaches by relating test pattern from the test pattern library in ProR to risk
assessment results in CORAS. Based on these initial assignments the test dewveloper starts specifying the
test cases in Papyrus following the ideas given by the test pattern. Each of the test models are again linked
to the corresponding test pattern, so that we get a transitive trace link to our initial test basis (i.e. risk
assessment results). As DIAMONDS provides model-based testing approaches we normally use test
generators to generate the test cases from the test models. The test generator has been integrated in that
way, that it adds and updates traceability links from the test models to the generated test cases. Thus, during
the whole security test dewelopment process the test dewveloper has full control over all dependencies that
are made persistent by means of the trace management platform. He can manually navigate along the links
and actively switch between the different models, artefacts and perspectives. He can easily control the
current status of the test development process by analysing the coverage of the risk assessment elements
with test pattern, test models and test cases.

1 http://www.quersoy.net/knowledge/crema

2 Lund, M., Solhaug, B, Stalen, K.: Model-Driven Risk Analysis: The CORAS Approach, Springer-Verlag, ISBN 978-3-
642-12322-1, 1st Edition 2011
3 http://iwww.papyrusuml.org/scripts/home/publigen/content/templates/show.asp?P=55&L=EN&ITEMID=2

© Copyright DIAMONDS Consortium

http://www.guersoy.net/knowledge/crema
http://www.papyrusuml.org/scripts/home/publigen/content/templates/show.asp?P=55&L=EN&ITEMID=2

Page : 710f 80

Version: 1.0
Date : 22.05.2013

. R i bl : ' Ei
@Mﬂﬂ@[ﬂ@@ Deliverable ID: D5.WP3 gﬁﬁﬁ : |;|33||ic
¥ Tracing Explorer | WE Weakness Explorer 52 | & Model Explorer = ¢

Final Security Testing Tools

MName of Vulnerability #Testcases #Pass ZFail #Mone #Inconclusive #Error
SQAL Injection 3 3 0 0 0 0
Attacker has access to the Router 4 0 0 0 0

[=
(==

Messages are executed without checking authentication 28 0 0 0 0

Figure 49: Vulnerability coverage by test cases

The second use case addresses the test documentation and test result aggregation. The test results from
the test execution are automatically linked with the corresponding test cases in the test specification and
modelling tools. Thus at the final end we can provide traceability links that relate test results with the initial
risk assessment results. Based on the traces we are able to calculate the coverage of e.g. winerabilities with
the successful and unsuccessful test from the test execution. Figure 49 shows the aggregated test results for
a set of winerabilities from the risk analysis.

3.2.1.2 General Concepts and High Level Architecture

The tool can be divided in three layers: The service layer contains all senices that operate on the models.
The traceability layer constitutes the core of the trace management tool and implements query handling. The
domain layer contains all domains and editor tools including their metamodels (see Figure 50). In the
following we describe the concept of our trace management framework layer by layer and component by
component.

Coverage Analyzing Likelihood Analyzing
Service Service

Trace Metamodel

Traceability Model Query Trace Query
Management Dispatcher Interpreter

Awjiqesoe. |

Trace Storage

Domain

Domain Query Interpreter
. . N Domain
Metamodel Editor , . Metamodel
Mapper Metamodel L | I

Figure 50: Trace Management Framework in Multi-Layer Diagram

e Traceability Platform Layer: All trace handling components are specified in the central layer. These
components manage the creation and modification of traces, use the information of the trace
metamodel and process query requests.

© Copyright DIAMONDS Consortium

Page : 720f 80

Version: 1.0

Final Security Testing Tools Date : 22.05.2013

= — Deliverable ID: D5.WP3 Fi
DIAMONDS e Confid . PUblc

Domain Platform Layer: In order to enable the development of senices for the traceability
managing tool, it is necessary to provide a unified metamodel of each domain. This unified domain
metamodel allows senices to access elements from editors that uses different metamodels.
Therefore, it is necessary that the editor dependent metamodel is mapped to the unified domain
metamodel. This is done with an editor-specific extension to the domain platform layer.

Service Layer: The whole trace management framework is useless without the senices. Each
senice uses parts of information from the models. By using the domain metamodels and the trace
metamodel, queries will be defined to get this information. The queries are sent from the senices to
the query dispatcher and answered with a set of elements and relations. A senice is triggered by
traceability management component e.g. when a user invokes corresponding functionality within an
editor. For example, a senice has to analyse the cowverage of test cases and the related system
components. The results may then be highlighted within the editor.

The Traceability Platform Layer consists of a number of components that each sene to the creation and
analysis of trace links.

Traceability Management: All user interactions for editing, viewing and deleting traces are
implemented in the trace management component. The traceability editing functions consists of a
trace editor and the trace explorer. The trace editor enables setting the trace type, assigning
elements to a trace selected within a model editor, and obtaining other trace information like source
model or name of each involved element.

Trace Metamodel: The trace metamodel specifies the different types of traces and between which
kind of elements these traces can be created. The traceability management uses the trace
metamodel in order to constrain the creation of traces. It prohibits creating traces between elements
a trace type is not defined for in the trace metamodel. The trace types as well as domain-specific
elements, their attributes and relationships within a domain can be referenced within a query. The
query dispatcher uses the trace metamodel to manage the query processing. In order to support new
senices, it is easy to extend the trace metamodel.

Trace Storage: The trace storage is used to store all traces. This store may be located on a local
disk. While this is sufficient in a single-user environment, teams require to access and modify traces
from different workstations. For that purpose, the trace metamodel can be stored in a network
repository and version control system. The project EMFStore* provides such a distributed storage.
Model Query Dispatcher: This senice has to collect information from the models depending on the
guerying senice. A query is solved by stepwise ewvaluating the constraints by distributing the
(partially solved) query to the trace query interpreter and the domain-specific query interpreters. The
task of each interpreter is to solve a partial query (called sub-query) by traversing its model using the
constraints defined in the query.

Trace Query Interpreter: The query dispatcher sends the sub-queries to the belonging interpreter.
The task of the trace query interpreter it to solve the submitted by accessing the actual trace model
and interprets the query of the dispatcher in that context. The trace query interpreter can only
resolve requests specified for the trace model but cannot process queries specified on elements
without a trace relation in the trace meta-model.

The Domain Platform Layer allows senices to access elements from the individual tools or editors. This
layer adapts the unified domain metamodel to the individual models in of the tools.

Domain Metamodel: The domain metamodel is an abstract model of a set of models belonging to a
certain domain. A domain metamodel has two conflicting requirements: While it should be very small
to just fit the specific use case it is selected for, it has to provide a set of elements that is large
enough to enable a reasonable mapping of an editor's metamodel to the domain metamodel. This
can be a difficult task because some editor metamodels are very complex and hence, a mapping to
a simple domain metamodel is not trivial. Another problem is to support enough use cases in order
to meet the requirements different senices dewveloped for the traceability managing platform have.
Each senice needs other elements from a metamodel. A new senice may need a relationship,

4 http:/iwww.eclipse.org/emfstore/

© Copyright DIAMONDS Consortium

http://www.eclipse.org/emfstore/

Page : 730f 80

Version: 1.0

Final Security Testing Tools Date : 22.05.2013

=SS — Deliverable ID: D5.WP3 Fi
DIAMONDS e Confid . PUblc

3.2.2

element that not considered previously in the domain metamodel. For that purpose, the domain
metamodel has to be changed. That change may result in ambiguity of relationships that relate to an
element that is split by such a change. As a further consequence, the model mapping as well as
queries used by a certain senice has to be adapted to fit the changed domain metamodel. The
obviously contradicting requirements of a small but flexible domain metamodel can be solved by
respecting only a certain set of use cases. In the context of the DIAMONDS project, we are
deweloping the trace management framework use case of risk-based security testing.

Domain Query Interpreter: The domain query interpreter is similar to the trace query interpreter. It
gueries a metamodel for certain elements. The main difference is that a domain metamodel instead
of the trace metamodel is used for processing a query. The domain query interpreter interprets the
data on the domain metamodel and the mapper can associate the related elements to the editor
model. That reduces the complexity of queries by working on domain metamodels that are less
complex than editor metamodels because they are designed to fit only certain use cases.

Editor Metamodel: The editor metamodel is the metamodel the editor tool is using. For example,
Papyrus® belongs to the system domain and uses UML2 [12] as metamodel. The requirements
domain belonging editor ProR uses ReglF, and the risk model editor CORAS [10] uses the CORAS
metamodel. Such models will not be queried directly but by using the mapping to the domain
metamodel.

Model Mapper: The model mapper defines a mapping between the domain metamodel and a
metamodel of a certain editor.

Application to Case Studies

The trace management framework was deweloped in the context of the Giesecke & Dewient (G&D) and the
Dornier Consulting case studies. In the context of G&D we had defined risk scenarios for the G&D banknote
processing machine with the risk assessment tool CORAS, like the authentication bypass of the Message
Router or the SQL injection into the database. The feasible wilnerabilities in the risk scenario are related with
test pattern and test cases. The trace management framework supports the user with an easy way to create
such relationships. The test pattern can be selected from the test pattern catalogue, modelled with the
requirement management tool ProR, and can create the relationship to the selected winerability. In the
same way, a relationship between the tests, like fuzzing test cases generated by the fuzzing test case
generator, and the wlnerability or the test pattern can be created.

SQL_injection

|$Ef

configuration message!
Message Router

».

TestPatternC... [f] GuD_Test_Mod... E] [R] Test Patterns &%

e Pattern Name Context |
n & Security of
s by a stricl
8 valid behay

Mavigate 3 on those 5y
lattacker has access to € o secured ¢
File v ing of iden
access. Ho
Edit e entation of
duct requir
¥} Delete from Model . Test pattern kinc: Behavior te path tha

sal Behavior Sequences
Testing Approach(es): Prevention 13]), some
Validation 3 115[10]) m

J
behavior s¢
TE Show Dashboard e
G TE Create Trace Authentification bypath 2 (Testcase) o confuse

Messages are exeq ™ Set Tracepoint
checking authy __

ould crash.
Authentification bypath 4 (Testcase)
E] Show Properties View

v v -

oo

de injectiol

o0
2

Usage of Unusal Behavior Sequences bilities is es
P ythreats. T
Authentification bypath 3 (Testcase) teved throt

Authentification bypath 1 (Testcase)

Properties

Remove from Context Ctrl+Alt+Shift+Down

nes

.

Figure 51 : Example of the Option Create Trace with the Trace Management Tool

In the ¢

ontext of G&D and the Dornier Consulting case study we deweloped a view for wilnerability coverage.

Each linked wilnerability is shown in the Weakness Explorer of the trace management framework (See

5 http://iwww.papyrusuml.org/scripts/home/publigen/contenttemplates/show.asp?P=55& L =EN&ITEMID=2

© Copyright DIAMONDS Consortium

http://www.papyrusuml.org/scripts/home/publigen/content/templates/show.asp?P=55&L=EN&ITEMID=2

Page : 74 0f 80

Version: 1.0
Date : 22.05.2013

= — Deliverable ID: D5.WP3 Fi
DIAMONDS e Confid . PUblc

Figure 49). For this, all traced winerabilities with directly or transitive relationships to test cases are listed
with the results of these test cases.

Final Security Testing Tools

3.2.3 Advances during DIAMONDS

Starting with a general trace tool concept of CReMa without restrictions and necessary trace information and
unspecified tool integration we deweloped a model based trace platform for risk based security testing. The
following improvements have been introduced in Diamonds:

o Dedicated support for risk-based security testing

e Improved user interaction directly from within the tools
o Domain model abstraction layer

e Query interface

3.2.3.1 Dedicated support for risk-based security testing

In the process of risk-based security testing a tool for risk assessment is necessary. We decided to integrate
the tool of the SINTEF ICT Company in Norway, CORAS. CORAS based on a model-driven risk analysis
method. Focus on the risk assessment, based on eclipse and open source were important criteria for the
decision. For the testing part we integrated the test dewelopment and execution tool TTworkbench of the
Testing Tech Company in Germany. The test description language is based on the IEEE standard test
language TTCN-3 and the tool also based on eclipse.

In DIAMONDS we deweloped the test pattern approach to define test categories with examples, instructions
and use cases for test cases. The most wlnerability testing test cases can assign to a test category
respectively the test case can defined by follow the line of one test pattern. To collect the dedicated test
pattern we use the requirement engineering tool ProR, deweloped by the Formal Mind Company in Germany.
The tool is based on the IEEE standardized requirement model Reqlf, open source and integrated in the
eclipse workbench.

To evaluate the test results we deweloped a test aggregation view where all wlnerabilities with related test
cases are listed. The results of the test results are listed in a verdict state matrix and can be used to
calculate the cowerage of winerabilities by test cases.

3.2.3.2 Improved user interaction directly from within the tools

To support the deweloper with an easy interaction we integrated the trace administration directly in the model
deweloping editor views. The user can:

- Create new traces between selected elements in all supported editors.

- Navigate to one traced element from a selected element.

- Delete atrace between the selected element and one of traced element.

- Edit one of the traces of a selected element.

The main advantage to other traceability is the neat integration of the interaction triggers in the user
interfaces of original tools, so that the user can dewvelop the model and define traces with the same tool
interface.

All traced elements can be administrated with the trace explorer. The explorer enables navigating through
the trace model and focusing on traced elements using the corresponding editor view. Also a filter
mechanism is enabled to define a filter for hiding non-relevant elements types. An example is depicted in
Figure 52, there is showing a screenshot of our current implementation. The traceability management
implementation is based on the tool CReMa deweloped by Itemis in the research project VERDES®.

6 hitp://lwww.guersoy.net/knowledge/crema

© Copyright DIAMONDS Consortium

http://www.guersoy.net/knowledge/crema

DIAHONDS

Page : 750f 80

Version: 1.0

Final Security Testing Tools Date : 22.05.2013

Deliverable ID: D5.WP3 Status : Final

Confid : Public

{5 Project Explorer 72 | T Model Explorer

Ml Authentication_bypass.coras_project -
<P model
] model_fuzzed.uml
(= DornierCaseStudy =
(= SQL_injection
| AttackPattern_TreatmentModel.coras_project
Rj CC_Catalogueregif
) TestPamemCatalogue _old reqif
B) TestPamemCatalogue.reqif
4 3 Diamonds_Gul_ttwb15
=4 TTthree Library
8 javasrc

= JRE System Libr,
i FuzzingLibrary_
& javasrc

&b

& logs

Vulnerability
Coverage

. Hinluaine

5% Ouwtline | [Properties | B Weakness Expiffer 52

Mame of Vulnerability #Testgh, *Pass =Fail =
Attacker has access ... 4 4 o [}
SQL Injection 5 o 0
Messages are execu... 28 0]

] m, 0

) Authenticati.. 22 |) SQL_injection [R) TestPatternC... " [R] TestPattems ©%
1 G Palette - Contedt [=
z | Security of i| =
heaao- T . 3
- s by a strict
e l Trace Menu Ao
- Basic Coras < k on those sy:
- © secured d.
& Threat Attacker has access to the Navigate ¥ ng of identi
Seenario aceess. How
b Direct Asset L2 > entation of :
| duct requirit
T Indirect Asset Edit 3 | Test pattem kind: Behavier te path that
N reauences | 4 A hies): P 13]
Human R Delete from Model | Testing Approachies): Prevention 11;?’10‘;”“‘
Threst) ma
- er sende configuration message! Edas behawior sec
Accidental o 2FS Hesas Router o Vodation ' normally e
¢ ;‘::;I" G W3 Show Dashboard ’
Deliberate . B Follow Trace v BR Usageof
iNentumsn | TTACE POINE F2 250 m oo » D amed | rACE EXplorer
Threat Vi WO Set Tracepoint » T
Ana iewer | et : t
A Tramtmant WO Delete Trace b
i dec.. 2| = B Traci =] Traci ' b (%] == 8
Y Tracing Selec \ Tracing Editer B enrrrea ' Tracing Explorer s (TT)
PR [Attacker has aceess to the Mesgige Router -
operte D Authentification bypath 1 (Tjhtcase)
. - L Remove from Context Ctrle Alte Shift« Down D Authentification bypath 2 { estcase)
ttacker has access to the £

CORAS

4 I Authentification bypath 3 (Testcase)
. Messages are executed without checking authent
Bl Usage of Unusal Behavior Sequences
D Authentification bypath 4 (Testcase)
D capec (Testease)
D CAPEC10 (Testcase)
D CAPEC 11 (Testease)
stcase)
stcase)

Messages are executed without checking authentication
CORAS

Authentification bypath 3 (Testease)
Dormier Editor

pstcase)
pstcase)

bstcase)
]

Trace Editor

[Update | [Detete | [Reset]

Figure 52: Traceability Management embedded in Eclipse (based on CReMa)

3.2.3.3 Domain model abstraction layer

For a risk driven traceability tool the bulk of tools are the most important part of interest. Each tool has to be
integrated into the tool landscape and the interaction between such tools has to be specified. We need tools
for risk assessment, for test definition and also for system modelling. We do not want to create a single tool
for all modelling parts but to use specific tools for each part of risk driven development to get the benefit of
each of specified tool. We defined different domains the tools are related to: The risk domain for developing
risk assessment models, the test domain for test cases simulating attacks on detected winerabilities, the
system domain for specify system components and interface interactions between them, and as the 4t
domain the requirement domain to specify requirements for test cases and for a test pattern catalogue.

Risk Domain

Reguirement
Domain

Traceability
Platform

Test Domain

e

Figure 53: Different Domains in Context of Risk-based Security Testing

To synchronize each tool in a domain, a domain-metamodel is specified.

© Copyright DIAMONDS Consortium

Final Security Testing Tools

Deliverable ID: D5.WP3

DIAHONDS

Page : 76 of 80
Version: 1.0

Date : 22.05.2013
Status : Final

Confid : Public

The interactions of the different domains are specified with the trace-metamodel (see Figure 54) and handled
by the trace management framework. The trace-metamodel is not only for restrict trace setting, but also to
connect the different domains in an information model and to use the metamodel for resolve queries on the
whole modelled system analyse. Each tool is integrated in such a specified domain and has only to define a

mapping from his owned tool model to the domain model.

Risk Domain Regquirement Domain

Threat Scenario
Treatment [-| /Unwanted
Inci
Vulnerability <
impacts

_C—&[-;‘ED’Y‘LZ_B_IL‘_,;_______, Test Pattern

Svstem Domain \ Test Domain
[esis
[esis

System
Eem TestCase
e T . fuzz-genereated :
Behavior Interaction || Test
Diagram Diagram Environment

Model
Relations

Trace
Relations

Figure 54: An Example of a Trace Metamodel in Context of Risk-based Security Testing

3.2.3.4 Query interface

To haw a way with the set of domains and the traces we had to dewelop an idea of an interaction
mechanism. The mechanism will be complex and needs much effort for optimizing and is only in a draft

stage.

The idea is to create an interface for solve queries on the whole model. The senice point has to define a
query and a query dispatcher has to solwe it in a distributed way. That means each domain has to specify an
own interpreter for the elements of the owning model. For example only the test domain query interpreter

can handle test domain elements and relationships between them.

Additionally we need the trace query interpreter to handle the relationships between the different domains.

These relationships are all traces defined by the user.

© Copyright DIAMONDS Consortium

DIAHONDS

Final Security Testing Tools

Deliverable ID: D5.WP3

Page : 77 0of 80

Version: 1.0

Date : 22.05.2013

Status : Final
Confid : Public

: Query Trace Query Domain Query
Service .
- Dispatcher Interpreter Interpreter A

QUERY
————————— —»
SUBQUERY
e]
ANSWER
____________________ »
SUBQUERY
i ______
ANSWER
SUBQUERY
N S
ANSWER
ANSWER

Domain Query
Interpreter B

Figure 55: Query Interaction between all Query-related Components

© Copyright DIAMONDS Consortium

Page : 780of 80

Version: 1.0
Date : 22.05.2013

Deliverable ID: D5.WP3 Status : Final

@\DI@M @m\@/g Confid : Public

4. CONCLUSION

In this document the tools that were designed or further dewveloped during DIAMONDS project were
described. In addition, the advances particular to each tool were explained along with how they were applied
to the use cases of the project. In addition to the ten separate tools described two different integration
platforms were described in Section 3.

Final Security Testing Tools

Advances and tool designs were typically based on advances made in the DIAMONDS work package 2. The
advances in methods that were made during the project on the methods are described in the deliverable of
that work package.

This deliverable is the final deliverable of the work package 3 of the DIAMONDS project.

© Copyright DIAMONDS Consortium

Page : 79 of 80

Version: 1.0

Final Security Testing Tools Date : 22.05.2013

= — Deliverable ID: D5.WP3 Fi
DIAMONDS e Confid . PUblc

REFERENCES

[1] Diamonds Consortium, section C - Active Security Testing Techniques". In: Final Security Testing
Techniques, deliverable D5.WP2, 2013

[2] Diamonds Consortium, section 2.2 “Vulnerability Directed Input Generation”, Active Testing,
deliverable D3.WP2, 2012.

[3] Hex-Rays, “Ida Pro disassembler and debugger’, http://www.hexrays.com/products/ida/index.shtml

[4] Zynamics, “BinNavi - binary code reverse engineering tool”, http://www.zynamics.com/binnavi.html

[5] “Reil language specification,” http://www.zynamics.com/binnavi/manual/html/reil language.htm

[6] Selenium - http://docs.seleniumhg.org/

[7] Altheide F., Doérr H., Schirr A.: Requirements to a Framework for sustainable Integration of System
Dewelopment Tools, in: Stoewer, Garnier (eds.), Proc. of the 3rd European Systems Engineering
Conference, AFIS (2002), 53-57

[8] Freude R, Konigs A.: Tool integration with consistency relations and their visualization. In:
Proceedings of the ESEC/FSE 2003 workshop on tool integration in system dewvelopment, Helsinki,
September 2003

[9] Katta, V., Stalhane, T.: A Conceptual Model of Traceability for Safety Systems, proceedings of
Springer-Verlag

[10] Lund, M., Solhaug, B, Stglen, K.. Model-Driven Risk Analysis: The CORAS Approach, Springer-
Verlag, ISBN 978-3-642-12322-1, 1st Edition 2011

[11] Maletic, J., Collard, M.: TQL: A Query Language to Support Traceability, TEFSE '09. ICSE
Workshop on, 18. May 2009

[12] OMG uUnified Modeling Language (OMG UML), Superstructure v2.4.1, formal/2011-08-06. OMG
specification, OMG (2011)

[13] Ramesh, B., Jarke, M.: Toward Reference Models for Requirements Traceability, IEEE Transactions
on Software Engeneering, Vol. 27, No. 1, January 2001

[14] Spanoudakis, G., Zisman, A.: Software Traceability: A Roadmap, Handbook of Software Engineering
and Knowledge Engineering, Vol. lll: Recent Advancements, (ed) Chang S. K., World Scientific
Publishing Co., ISBN 981-256-273-7, 2005

[15] Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF Eclipse Modeling Framework, Person,
ISBN-13: 978-0-321-33188-5, 2nd Edition 2008-12-16

[16] D1.WP1.FINAL.v11.use-case-oveniews-and-requirements.pdf. "SMART CARDS AND THE MOBILE
NFC ECOSYSTEM".

[17] GlobalPlatform Card: "Remote Application Management over HTTP Card Specification 2.2 —
Amendment B".

[18] Diamonds_FPP_vi_3.pdf: " DIAMONDS: Dewelopment and Industrial Application of Multi-Domain
Security Testing Technologies".

[19] ETSI ES 201 873-1: “Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language”.

[20] ETS 300 406: "Methods for Testing and Specification (MTS); Protocol and profile conformance
testing specifications; Standardization methodology".

[21] ETSI ES 201 873-5: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".

[22] Charles Miller: Fuzz By Number. CanSecWest 08. http://cansecwest.com/csw08/csw08-miller. pdf

[23] Jack Koziol: Fuzzers - The ultimate list. InfoSec Institute.
http://www.infosecinstitute.com/blog/2005/12/fuzzers -ultimate-list. html

[24] C DeMott, J., Miller. C.: Fuzzing for Software Security Testing and Qualitiy Assurance. Artech
House, Boston (2008)

[25] The Jython Project. http://www.jython.org/

© Copyright DIAMONDS Consortium

http://www.hexrays.com/products/ida/index.shtml
http://www.zynamics.com/binnavi.html
http://www.zynamics.com/binnavi/manual/html/reil%20language.htm
http://docs.seleniumhq.org/
http://cansecwest.com/csw08/csw08-miller.pdf
http://www.infosecinstitute.com/blog/2005/12/fuzzers-ultimate-list.html
http://www.jython.org/

Page : 80of 80

Version: 1.0

Final Security Testing Tools Date : 22.05.2013

@\DI@M @m\@/g Confid : Public

Deliverable ID: D5.WP3 Status : Final

[26]

[27]

[28]
[29]
[30]
[31]

[32]

ETSI TS 102 226: "Technical Specification Smart Cards; Remote APDU structure for UICC based
applications"

P. Mouttappa, S. Maag, A. Cavalli, Monitoring based on IOSTS for testing functional and security
properties. Application to an Automotive case study, in: 37th International Conference on Computer
Software and Applications (COMPSAC'13), 2013.

F. Lalanne, X Che, S. Maag, Data-centric property formulation for passive testing of communication
protocols, in: Proceedings of the Applied Computing Conference (ACC11), 2011, pp. 176--181.
Hewlett-Packard, SIPp, Website, http://sipp.sourceforge.net/(2004).

P. Mouttappa, Telecom SudParis, http://www-public.it-sudparis.eu/_mouttapp/ TestSym.html

ETSI ES 202 553: Methods for Testing and Specification (MTS);TPLan: A notation for expressing
Test Purposes

Altheide F., Dorr H., Schirr A.: Requirements to a Framework for sustainable Integration of System

Dewelopment Tools, in: Stoewer, Garnier (eds.), Proc. of the 3rd European Systems Engineering
Conference, AFIS (2002), 53-57

© Copyright DIAMONDS Consortium

http://sipp.sourceforge.net/(2004)
http://www-public.it-sudparis.eu/_mouttapp/TestSym.html

