

Title: Initial methodologies for model-based security
testing and risk-based security testing

Version: 1.1
Date : 02.07.2012
Pages : 67

Editor: Fredrik Seehusen

Reviewers:

To: DIAMONDS Consortium

The DIAMONDS Consortium consists of:

Codenomicon,	
 Conformiq,	
 Dornier	
 Consulting,	
 Ericsson,	
 Fraunhofer	
 FOKUS,	
 FSCOM,	
 Gemalto,	
 Get	
 IT,	

Giesecke	
 &	
 Devrient,	
 Grenoble	
 INP,	
 itrust,	
 Metso,	
 Montimage,	
 Norse	
 Solutions,	
 SINTEF,	
 Smartesting,	

Secure	
 Business	
 Applications,	
 Testing	
 Technologies,	
 Thales,	
 TU	
 Graz,	
 University	
 Oulu,	
 VTT	

Status: Confidentiality:

[
[
[
[X

]
]
]
]

 Draft
 To be reviewed
 Proposal
 Final / Released

[
[
[

X

]
]
]

 Public
 Restricted
 Confidential

 Intended for public use
 Intended for DIAMONDS consortium only
 Intended for individual partner only

Deliverable ID: D4_3_T2_T3

Title:

Initial methodologies for model-based security testing and risk-based security testing

Summary / Contents:

This document constitutes the second deliverable for task 4.2 and task 4.3 of work package 4 on risk-
and model-based security testing methodologies. While the other work packages of the DIAMONDS
project describe techniques/methods and tools, work package 4 describes processes/guidelines for
applying these tool and techniques in practice.

Contributors:

Nadja Menz, Johannes Viehmann (Fraunhofer FOKUS)

Gencer Erdogan, Yan Li, Fredrik Seehusen, Ketil Stølen (SINTEF)

 Copyright DIAMONDS Consortium

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 2 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

TABLE OF CONTENTS
1. A conceptual framework for model-based security testing and risk analysis 7	

1.1	
 Risk Management .. 7	

1.2	
 Risk Analysis .. 9	

1.3	
 Security ... 10	

1.4	
 Testing .. 11	

1.5	
 Security Risk Analysis .. 15	

1.6	
 Security Testing .. 16	

1.7	
 Model .. 16	

1.8	
 Model-based Security Risk Analysis (MSR) ... 17	

1.9	
 Model-based Security Testing (MST) ... 17	

1.10	
 Test-driven Model-based Security Risk Analysis (TMSR) .. 18	

1.11	
 Risk-driven Model-based Security Testing (RMST) .. 20	

2. A process for test-driven security risk analysis ... 22	

2.1	
 Step 1: Establish context and target of evaluation ... 24	

2.2	
 Step 2: Risk identification ... 25	

2.3	
 Step 3: Risk estimation ... 25	

2.4	
 Step 4: Test identification ... 25	

2.4.1	
 Identifying testable threat scenarios .. 25	

2.4.2	
 Identifying security tests ... 26	

2.5	
 Step 5: Test execution .. 26	

2.5.1	
 Tools .. 27	

2.5.2	
 Execution ... 28	

2.6	
 Step 6: Risk consolidation and treatment ... 28	

3. an Evaluation of a PROCESS FOR Test-driven Security Risk Analysis Based on the norse
solutions Case Study .. 28	

3.1	
 Research method and hypotheses ... 29	

3.1.1	
 Risk models ... 29	

3.1.2	
 Difference between risk models ... 31	

3.1.3	
 Hypotheses .. 31	

3.2	
 Overview of process for Test-driven Security Risk Analysis .. 31	

3.3	
 Results .. 33	

3.4	
 Discussion .. 35	

3.4.1	
 Hypothesis 1 .. 35	

3.4.2	
 Hypothesis 2 .. 36	

3.4.3	
 Hypothesis 3 .. 36	

3.5	
 Conclusion .. 37	

4. Extension for the CORAS risk analysis method ... 37	

4.1	
 Background .. 38	

4.1.1	
 Information Security Indicators .. 38	

4.1.2	
 Common Criteria for Information Technology Security Evaluation 38	

4.1.3	
 Risk analysis with FTA, FME(C)A and probability theory .. 39	

4.1.4	
 Risk analysis with the CORAS method .. 40	

4.1.5	
 CORAS risk analysis complexity and difficulty ... 40	

4.2	
 A Template Library for Model-Based Risk Analysis ... 41	

4.2.1	
 Employing ISI and CC for Model-Based Risk Analysis .. 41	

4.2.2	
 Exemplary Application to two DIAMONDS Case Studies .. 42	

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 3 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

4.3	
 Composition of Risk Analysis Artefacts .. 46	

4.3.1	
 Creating reusable threat interfaces for components .. 46	

4.3.2	
 Threat composition diagram .. 47	

4.3.3	
 Composition with external threats and assets ... 55	

4.4	
 Deriving and Comparing Risks ... 59	

4.4.1	
 Comparing the risks of components and architectures .. 63	

4.5	
 Conclusion, Related and Further Work .. 65	

5. References ... 66	

 FIGURES

Figure 1 The overall risk management process (adapted from [p.14,[30]]). ... 8	

Figure 2 Conceptual model for Risk Analysis. .. 10	

Figure 3 Conceptual model for Security ... 11	

Figure 4 Overall test process [p.7-p.22,[31]]. .. 12	

Figure 5 The testing process used in DIAMONDS, adapted from [31]. .. 13	

Figure 6 Conceptual model for Testing. .. 14	

Figure 7 Conceptual model for Security Risk Analysis. .. 15	

Figure 8 Conceptual model for Security Testing. .. 16	

Figure 9 Conceptual model for Model. .. 17	

Figure 10 General model-based testing setting [24]. .. 18	

Figure 11 Test-driven Model-based Security Risk Analysis process. ... 19	

Figure 12 Risk-driven Model-based Security Testing process. .. 21	

Figure 13 Overview of the steps in the process. ... 24	

Figure 14 of a threat diagram for Norse Options (without likelihood and consequence values). 25	

Figure 15 Test automation. ... 28	

Figure 16 Example of a CORAS risk model. ... 31	

Figure 17 Number of risk model elements before and after testing. ... 33	

Figure 18 Number of risks and threat scenarios tested and updated. .. 34	

Figure 19 Difference between risk models before and after testing. .. 35	

Figure 20 General Class Structure. .. 39	

Figure 21 Template Diagram based on Indicators and SFRs. .. 42	

Figure 22 External Intrusions and Attacks. ... 45	

Figure 23 Malfunctions. .. 45	

Figure 24 Security Critical User Behaviour. .. 45	

Figure 25 CORAS threat diagram. .. 46	

Figure 26 Threat interface. ... 47	

Figure 27 Threat composition diagram with three components. ... 48	

Figure 28 Threat composition diagram with additional base components. ... 50	

Figure 29 Threat composition diagram for power supply. ... 52	

Figure 30 Threat composition diagram with three base services. .. 54	

Figure 31 Difficulties to physically access the server rooms for the different human threats. 55	

Figure 32.. Threat composition diagram with coalitions (excerpt 1). .. 57	

Figure 33 Threat composition diagram with coalitions (excerpt 2, containing only the service unavailable top

level incident, with probability value results). ... 58	

Figure 34 Threat composition diagram for a single time-stamp service with assets and consequences. 60	

Figure 35 Risk diagram for a single time-stamp service. .. 62	

Figure 36 Risk comparison diagram. ... 64	

Figure 37 Tracing Preservation. ... 65	

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 4 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

 TABLES

Table 1 Likelihood scale ... 26	

Table 2 Overview of the work shops held during the assessment .. 32	

Table 5 TD6. Usage of Insecure Protocols/Software .. 43	

Table 3 TD7. Insufficient Password Policies/Practices and .. 44	

Table 6 Risk Function for Base Incidents ... 61	

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 5 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

HISTORY
Vers. Date Author Description
0.1 16/04/12 Fredrik

Seehusen
Template created

0.2 18/04/12 Nadja Menz Outline for Chapter 3.1
1.0 01/05/12 Fredrik

Seehusen
Document finalised.

1.1 02/07/12 Nadja Menz Revision of chapter 4

APPLICABLE DOCUMENT LIST
Ref. Title, author, source, date, status DIAMONDS ID
1

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 6 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

EXECUTIVE SUMMARY

This document constitutes the second deliverable for task 4.2 and task 4.3 of work package 4 on risk- and
model-based security testing methodologies. While the other work packages of the DIAMONDS project de-
scribe techniques/methods and tools, work package 4 describes processes/guidelines for applying these tool
and techniques in practice.

This deliverable has four sections. First, in Section 1, we describe a conceptual framework defining the main
concepts related to model-based security testing risk-based testing and their relationships. The conceptual
framework serves a basis for defining methodologies for risk- and model-based security testing. In Section 2,
we present an initial process for test-driven security risk assessment which was used in a DIAMONDS case
study. This process has been evaluated, and the results of the evaluation are presented in Section 3. Finally,
Section 4 presents a method to increase the efficiency of the risk analysis process in the setting of model-
based risk assessment.

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 7 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

1. A CONCEPTUAL FRAMEWORK FOR MODEL-BASED SECURITY
TESTING AND RISK ANALYSIS
This chapter documents the conceptual framework clarifying the notions of security testing, risk analysis, and
related concepts, as well as defining the relations among them.

The conceptual framework offers a basis for future research in the project by providing a common under-
standing of the central notions within security testing and security risk analysis. Our approach is to build the
conceptual framework upon established concepts from state-of-the-art. However, we also make adjustments
of established notions where seen necessary or appropriate, in order to achieve a consistent framework
suitable for the particular target of the DIAMONDS project.

In DIAMONDS, we focus on model-based approaches to security testing and security risk analysis, where
models are used as a main artefact both during the testing/analysis process and for documentation purpos-
es. In particular we distinguish between model-based security testing (MST) and model-based security risk
analysis (MSR). For combining MST and MSR, there are two main possibilities depending on which ap-
proach is taken as the starting point, i.e., the main purpose of the process. We will refer to these as risk-
driven model-based security testing (RMST) and test-driven model-based security risk analysis (TMSR).

The remainder of this chapter is organized as follows: We start by introducing the overall risk management
process in Section 1.1, before considering the basic notions of risk analysis, security, and testing in Sections
1.2, 1.3, and 1.4, respectively. In Sections 1.5 and 1.6 we build on the previous sections when presenting the
definitions for security risk analysis and security testing, respectively. The basic concepts for models are
presented in Section 1.7. In Sections 1.2-1.7 we use definitions from standards as much as possible, and
additionally provide our interpretation of the relationships between the various concepts. The definitions of
model-based security risk analysis (MSR) and model-based security testing (MST) are defined in Sections
1.8 and 1.9, respectively. Finally, we provide our proposal for test-driven model-based security risk analysis
(TMSR) in Section 1.10, and for risk-driven model-based security testing (RMST) in Section 1.11.

1.1 RISK MANAGEMENT
It is necessary to introduce the overall risk management process before we look closer into risk analysis and
other relevant concepts. ISO 31000 Risk management - Principles and guidelines [30] is our main building
block in terms of defining and explaining the concept of risk management and the concepts related to risk
management. The overall risk management process shown in Figure 1 is taken from [p.14,[30]].

There is however one deviation: Our definition of risk estimation is equivalent to what ISO 31000 refers to as
risk analysis. Instead we use the term risk analysis in line with how the term is used in practice to denote the
five step process in the middle of Figure 1 starting with Establishing the context and ending with Risk treat-
ment.

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 8 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 1 The overall risk management process (adapted from [p.14,[30]]).

As stated in ISO31000 [p.1,[30]], all activities of an organization may involve risk. Organizations usually
manage risk by identifying it, analyzing it and then evaluating it to see whether the risk should be modified by
risk treatment in order to satisfy the risk evaluation criteria. Through this process, communication and consul-
tation are carried out with stakeholders to monitor and review the risk as well as controls that are modifying
the risk, which ensures no further risk treatment is required. Risk management can be applied to an entire
organization, at its many areas and levels, at any time, as well as to specific functions, projects and activi-
ties. Although the practice of risk management has been developed over time and within many sectors in
order to meet diverse needs, the adoption of consistent processes within a comprehensive framework can
help to ensure that risk is managed effectively, efficiently and coherently across an organization.

• Risk Management
Risk management refers to the coordinated activities to direct and control an organization with re-
gard to risk [p.2,[30]].

• Risk Management Process
Risk management process is the systematic application of management policies, procedures and
practices to the activities of communicating, consulting, establishing the context, and identifying,
analyzing, evaluating, treating, monitoring and reviewing risk [p.3,[30]].

• Communication and Consultation
Communication and consultation refers to the continual and iterative processes that an organization
conducts to provide, share or obtain information and to engage in dialog with stakeholders regarding
the management of risk [p.3, [30]].

• Establishing the Context
Establishing the context refers to the process of defining the external and internal parameters to be
taken into account when managing risk, and setting the scope and risk criteria for the remaining pro-
cess (adapted from [p.3, [30]].

• Risk Assessment
Risk assessment is the overall process of risk identification, risk estimation and risk evaluation [p.4,
[30]].

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 9 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

• Risk Identification
Risk identification is the process of finding, recognizing and describing risks. This involves identifying
sources of risk, areas of impacts, events (including changes in circumstances), their causes and
their potential consequences. Risk identification can involve historical data, theoretical analysis, in-
formed and expert opinions, and stakeholder's needs [p.4, [30]].

• Risk Estimation
Risk estimation is the process to comprehend the nature of risk and to determine the level of risk.
This involves developing an understanding of the risk. Risk estimation provides the basis for risk
evaluation and decisions on whether risks need to be treated, and on the most appropriate risk
treatment strategies and methods (adapted from [p.5, [30]].

• Risk Evaluation
Risk evaluation is the process of comparing the results of risk estimation with risk criteria to deter-
mine whether the risk and/or its magnitude is acceptable or tolerable. Risk evaluation assists in the
decision about risk treatment (adapted from [p.6, [30]].

• Risk Treatment
Risk treatment is the process to modify risk. This can involve avoiding the risk by deciding not to
start or continue with the activity that gives rise to risk , or taking or increasing risk to pursue an op-
portunity [p.6, [30]].

• Risk Analysis
Risk Analysis is a collective term defining the process consisting of the following steps: Establishing
the context, Risk identification, Risk estimation, Risk evaluation and Risk treatment (adapted from
[p.14, [30]].

• Monitoring
Monitoring is the continual checking, supervising, critically observing or determining the status in or-
der to identify change from the performance level required or expected [p.7, [30]].

• Review
Review is the activity undertaken to determine the suitability, adequacy and effectiveness of the sub-
ject matter to achieve established objectives [p.7, [30]].

1.2 RISK ANALYSIS
The conceptual model and notions defined here are based on the ISO 31000 standard [30]. Figure 2 shows
the conceptual model for risk analysis adopted by the DIAMONDS project.

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 10 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Objective Stakeholder

LikelihoodRisk Event

Consequence Risk source

Risk
Criterion

Risk Level

11..*

111*

1

1 in
iti

at
es

11

**

Figure 2 Conceptual model for Risk Analysis.

• Risk
Risk is the combination of the consequences of an event with respect to an objective and the asso-
ciated likelihood of occurrence (adapted from [p.1, [30]]).

• Objective

An objective is something the stakeholder is aiming towards or a strategic position it is working to at-
tain (adapted from [34]).

• Risk Source

Risk source is an element which alone or in combination has the intrinsic potential to give rise to risk
[p.4, [30]].

• Stakeholder

Stakeholder is a person or organization that can affect, be affected by, or perceive themselves to be
affected by a decision or activity [p.4, [30]].

• Event

Event is the occurrence or change of a particular set of circumstances [p.4, [30]].

• Likelihood
Likelihood is the chance of something happening [p.5, [30]].

• Consequence

Consequence is the outcome of an event affecting objectives [p.5, [30]].

• Risk Criterion
A risk criterion is the term of reference against which the significance of a risk is evaluated [p.5, [30]].

• Risk Level

Risk level is the magnitude of a risk or combination of risks, expressed in terms of the combination of
consequences and their likelihood [p.6, [30]].

1.3 SECURITY
The terms information security, computer security and information assurance are frequently used inter-
changeably. These fields are often interrelated and share the common goals of protecting the confidentiality,
integrity and availability of information; however, there are some subtle differences between them [23]

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 11 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

These differences lie primarily in the approach to the subject, the methodologies used, and the areas of con-
centration. Information security is mainly concerned with the confidentiality, integrity and availability of data
regardless of the form the data may take, such as electronic, print, or other forms. Computer security mainly
focuses on ensuring the availability and correct operation of a computer system without concern for the in-
formation stored or processed by the computer. Information assurance focuses on the reasons for assurance
that information is protected, and is thus reasoning about information security [23].

In the DIAMONDS project we use the term security in the meaning of information security, where the defini-
tion of information security has been taken from ISO IEC 27000-Information Security Management System
[29].

Security

Confidentiality Availability Integrity

Figure 3 Conceptual model for Security

• Security

Security refers to the preservation of confidentiality, integrity and availability of information (adapted
from [p.3,[29]].

• Confidentiality

Confidentiality is the property that information is not made available or disclosed to unauthorized in-
dividuals, entities, or processes [p.2,[29]].

• Availability

Availability is the property of information being accessible and usable upon demand by an authorized
entity [p.2,[29]].

• Integrity

Integrity is the property of protecting the accuracy and completeness of information (adapted from
[p.4,[29]].

1.4 TESTING
In this section, we particularly focus our conceptual clarification on software testing related to the DIA-
MONDS project. Our primary source for the notion of software testing and related notions is the upcoming
international standard ISO/IEC 29119 Software Testing [31] defined by Software and Systems Engineering
Standards Committee of the IEEE Computer Society.

However, ISO/IEC 29119 is still under development, and we only have access to a draft version of Part 2
(ISO/IEC 29119 Draft Part 2-Testing Process) at the time of writing. For related notions not found in Part 2,
we use IEEE 829 [28] and BS 7925-1/-2 [33], which are expected to be incorporated into ISO/IEC 29119.

As stated in ISO/IEC TR 19759 [25], testing concepts, strategies, techniques, and measures need to be in-
tegrated into a defined and controlled process which is run by people. The testing process provides support
for testing activities as well as guidance for testing teams. It provides justified assurance that the test objec-

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 12 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

tives will be met cost-effectively. We introduce the overall testing process (see Figure 4 defined in ISO/IEC
29119 [31] before we define the specific testing process used in the DIAMONDS project.

Figure 4 Overall test process [p.7-p.22,[31]].

The testing activities that are performed during the life cycle of a software system may be grouped into a
three layers test process [p.2,[31]], as shown in Figure 4.

The aim of the organizational test process layer is to define a process for the creation and maintenance of
organizational test specifications, such as organizational test policies, strategies, processes, procedures and
other assets [p.2,[31]].

The aim of the test management process layer is to define processes that cover the management of testing
for a whole test project or any test phase or test type within a test project (e.g. project test management,
system test management, performance test management) [p.2,[31]].

The aim of the dynamic test process layer is to define generic processes for performing dynamic testing.
Dynamic testing may be performed at a particular phase of testing (e.g. unit, integration, system, and ac-
ceptance) or for a particular type of testing (e.g. performance testing, security testing, and functional testing)
within a test project [p.2,[31]].

What we refer to at the testing process in the DIAMONDS project is basically what Figure 4 refers to as the
dynamic test process. However, as indicated by Figure 5 we also add a test planning step capturing the test
planning of the test management process of relevance for one run of the dynamic test process.

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 13 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Test	
 Planning

Test	
 Design	
 &	

Implementation

Test	
 Execution

Testing	
 Process

Test	
 Incident	

Reporting

Test	
 Environment	

Set-­‐up	
 &	

Maintenance

Figure 5 The testing process used in DIAMONDS, adapted from [31].

• Testing

Testing is the process of exercising the system to verify that it satisfies specified requirements and to
detect errors (adopted from [33]).

• Test Planning

The test planning is the process of developing the test plan. Depending on where in the project this
process is implemented this may be a project test plan or a test plan for a specific phase, such as a
system test plan, or a test plan for a specific type of testing, such as a performance test plan (adopt-
ed from [p.8,[31]].

• Test Design and Implementation
The test design and implementation is the process of deriving the test cases and test procedures
(adopted from [p.23,[31]]).

• Test Environment Set-up and Maintenance
The test environment set-up and maintenance process is the process of establishing and maintain-
ing the environment in which tests are executed (adopted from [p.27,[31]]).

• Test Execution
The test execution is the process of running the test procedure resulting from the test design and
implementation process on the test environment established by the test environment set-up and
maintenance process. The test execution process may need to be performed a number of times as
all the available test procedures may not be executed in a single iteration (adopted from [p.28,[31]].

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 14 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

• Test Incident Reporting
The test incident reporting is the process of managing the test incidents. This process will be entered
as a result of the identification of test failures, instances where something unusual or unexpected
occurred during test execution, or when a retest passes (adopted from [p.30,[31]]).

The conceptual model for testing used in the DIAMONDS is defined in Figure 6.

Test planTest policy Stakeholder

Test
requirement

Feature Test

Test result

Test procedure

System

1..

1..*
*

11..*

*
*

1 *

1..*1..*

*

1..*

*
1

is described by

Test failureTest incident
1..*1..*

Test
environment

**

Figure 6 Conceptual model for Testing.

• Test Policy

The test policy is a document that describes the purpose, goals, and overall scope of the testing
within the organization (adopted from [p.4,[31]]).

• Test Plan

Test plan is a document describing the scope, approach, resources, and schedule of intended test
activities [p.11,[28]].

• Test Requirement
Test requirement is a capability that must be met or possessed by the system (requirements may be
functional or non-functional) - (adopted from [33]).

• System
A system is an interacting combination of elements that aim to accomplish a defined objective. The-
se include hardware, software, firmware, people, information, techniques, facilities, services, and
other support elements [p.2-3,[25]].

• Feature
Feature is a distinguishing characteristic of a system item (includes both functional and nonfunctional
attributes such as performance and reusability) [p.9,[28]].

• Test
Test1 is a set of inputs, execution preconditions, and expected outcomes developed for a particular
objective, such as to exercise a particular program path or to verify compliance with a specific re-
quirement (adopted from [33]).

1 Note that the term test as defined here is sometimes referred to as test case in other resources.

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 15 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

• Test Procedure

Documentation that specifies a sequence of actions for the execution of a test [28].

• Test Environment
Test environment is the description of the hardware and software environment in which the tests will
be run, and any other software with which the software under test interacts (adopted from [33]).

• Test Incident
Test incident is an unplanned event occurring during testing that has a bearing on the success of the
test. Most commonly raised when a test result fails to meet expectations [33].

• Test Failure
Test failure is the deviation of the software from its expected delivery or service (adopted from [33]).

• Test Result
A test result is an actual outcome or a predicted outcome of a test (adopted from [33]).

1.5 SECURITY RISK ANALYSIS
Lund et al. [10] classify risk analysis approaches into two main categories:

• Offensive approaches: Risk analysis concerned with balancing potential gain against risk of invest-
ment loss. This kind of risk analysis is more relevant within finance and political strategy making.

• Defensive approaches: Risk analysis concerned with protecting what is already there.

In the context of security, the defensive approach is the one that is relevant.

ObjectiveAsset

Security
requirement Threat

Risk source

Vulnerability

1..
Risk

Security risk

Event

Unwanted
incident

Figure 7 Conceptual model for Security Risk Analysis.

For the definitions of Risk, Objective, Risk source and Event see Section 1.3.

• Security Risk Analysis

Security risk analysis is the process of risk analysis specialized towards security.

• Asset
Asset is anything that has value to the stakeholders (adopted from [29]).

• Security Requirement
Security requirement is a specification of the required security for the system (adopted from [33]).

• Security Risk
Security risk is a risk caused by a threat exploiting a vulnerability and thereby violating a security re-
quirement.

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 16 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

• Unwanted Incident
Unwanted incident is an event representing a security risk.

• Threat
Threat is potential cause of an unwanted incident [29].

• Vulnerability
Vulnerability is weakness of an asset or control that can be exploited by a threat [29].

1.6 SECURITY TESTING
Based on the notions of security and testing we define security testing as follows:

• Security Testing
Security testing is the process of testing specialized towards security.

To be more specific, we can understand security testing as the testing and/or evaluation of the management,
operational, and technical security controls to determine the extent to which the controls are implemented
correctly, operating as intended, and producing the desired outcome with respect to meeting the security
requirements for the system or enterprise [27]. The basic security concepts that need to be covered by secu-
rity testing are: confidentiality, availability, and integrity.

Test
requirement

Security test
requirement

Figure 8 Conceptual model for Security Testing.

For the definition of Test Requirement see Section 1.4

• Security Test Requirement
A security test requirement is a test requirement specialized towards security.

1.7 MODEL
This section clarifies the notion of model (see Figure 9). The concepts described here are based on TOGAF
(The Open Group Architecture Framework) [32], System Analysis and Design [26] and SWEBOK (Software
Engineering Body of Knowledge) [25].

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 17 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Test model

ViewModel

Test
environment

model
System modelRisk model

Figure 9 Conceptual model for Model.

• Model

Model is a representation of a subject of interest. A model provides a smaller scale, simplified,
and/or abstract representation of the subject matter (adopted from [32]).

• System Model
A system model represents a system.

• View
A view is the representation of a related set of concerns.

• Risk Model
A risk model represents risks.

• Test Model
A test model represents tests.

• Test Environment Model
A test environment model represents the test environment.

1.8 MODEL-BASED SECURITY RISK ANALYSIS (MSR)
Based on the notions of model and security risk analysis we define the term model-based security risk anal-
ysis as follows:

• Model-Based Security Risk Analysis (MSR)
Model-based security risk analysis is security risk analysis in which each step of the process in-
cludes the construction and analysis of models.

1.9 MODEL-BASED SECURITY TESTING (MST)
Model-based testing is a software testing approach that relies on models of a system under test and its envi-
ronment to derive test cases. Usually, the testing model is derived in whole or in part from a model that de-
scribes functional or non-functional aspects (e.g. performance, security, ergonomics) of the system under
development [24]. Figure 10 illustrates a general model-based testing setting.

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 18 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Test model

Abstract tests Executable tests

System

is a partial description of

are abstract versions of

are derived from can be run against

Figure 10 General model-based testing setting [24].

• Model-based Security Testing

Model-based security testing is security testing that involves the construction and analysis of a sys-
tem model, a test model and a test environment model to derive tests.

1.10 TEST-DRIVEN MODEL-BASED SECURITY RISK ANALYSIS (TMSR)
Test-driven Model-based Security Risk Analysis (TMSR) is defined as the combination of security risk analy-
sis and security testing in which security testing is carried out both before and after the security risk assess-
ment process. The first usage (i.e., testing before the security risk assessment process) supports the security
risk analysis process by identifying potential risks, while the second usage (i.e., testing after the security risk
assessment process) is used to validate security risk models based on security test results. Figure 11 illus-
trates the process of TMSR where risk validation is added in Step 7.

• Test-driven Model-based Security Risk Analysis (TMSR)
Test-driven Model-based Security Risk Analysis (TMSR) is model-based security risk analysis that
use testing within the risk analysis process.

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 19 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Step1:	
 Establish	

Context	
 and	

Target	

Step3:	
 Risk	

Identification

Step5:	
 Risk	

Evaluation

Step7:	
 	
 Risk	

Validation	
 and	

Treatment

Security	
 Risk	
 Analysis

Test-­‐driven	
 Model-­‐based	
 Security	
 Risk	
 Analysis	
 (TMSR)

Step2:	
 Testing	

Process

Step4:	
 Risk	

Estimation

Step6:	
 Testing	

Process

Security	
 Testing	
 Process

Security	
 Testing	
 Process

Figure 11 Test-driven Model-based Security Risk Analysis process.

The testing process in Step 2 and Step 6 is the testing process defined in Section 1.4 specialized towards
security.

The following describes the steps in the TMSR process including the input and output for each step in the
process.

Step 1: Establish Context and Target
The first step is the initial preparation for risk analysis in which a basic idea about target, scale of analysis
and corresponding context are established. This can be performed by an introductory meeting with the cus-
tomer on the behalf of which the analysis is conducted. The representatives of the customer can present
their overall goals of the analysis and the target they wish to have analyzed in structured meetings, in which
a common initial understanding of the target for analysis is established. The overall goals of the analysis are
defined and the rest of the analysis is planned.

• Input: Objective
• Output: Risk criteria, System model, Assets that need to be defended

Step 2: Testing Process

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 20 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Based on the identified assets, relevant components of the system are identified and considered as test tar-
gets. Test models are then built according to the test targets and security requirements, and are further used
to generate tests. After tests have been executed the result is reported and directed as an input to Step 3
where it supports the security risk analysis process to identify potential security risks.

• Input: Risk criteria, System model, Assets that need to be defended
• Output: Test result

Step 3: Risk Identification
The risk identification involves a systematic identification of threats, unwanted incidents, and vulnerabilities
with respect to the identified assets and the security test results from Step 2. Particular focus will be put upon
security risks that are related to software functionality and requirements. Taxonomy-based questionnaires or
risk checklists may be used by project members in a structured brainstorm meeting.

• Input: Risk criteria, System model, Assets that need to be defended, Test result
• Output: Incomplete risk model

Step 4: Risk Estimation
The main goal here is to define the likelihoods and consequences of the risks identified in Step 3. These
values in combination indicate the risk level for each of the identified risks. The risk estimation can be con-
ducted as a brainstorming session involving personnel with various backgrounds.

• Input: Risk criteria, System model, Assets that need to be defended, Incomplete risk model
• Output: Risk model

Step 5: Risk Evaluation
The purpose of risk evaluation is to assist in making decisions, based on the outcomes of risk estimation,
about which risks need treatment and the priority for treatment implementation.

• Input: Risk criteria, System model, Assets that need to be defended, Risk model
• Output: Risk prioritized with respect to risk criteria

Step 6: Testing Process
Based on the prioritized risks, relevant system components are analyzed and considered as security test
targets. Test models are then built according to test targets and security requirements. Security tests are
then created and executed based on the security test models. After tests have been executed the result is
reported and directed as an input to Step 7 where it supports the security risk analysis process to validate
the security risk models.

• Input: Risk criteria, System model, Assets that need to be defended, Risk model, Risk prioritized
with respect to risk criteria

• Output: Test result

Step 7: Risk Validation and Treatment
Security testing results from Step 6 are used to validate the risk models. The unacceptable risks will be fur-
ther evaluated with possible treatment to reduce likelihood and negative consequences, according to risk
evaluation criteria.

• Input: Risk criteria, System model, Assets that need to be defended, Risk model, Risk prioritized
with respect to risk criteria, Test result

• Output: Updated risk model, Treatment

1.11 RISK-DRIVEN MODEL-BASED SECURITY TESTING (RMST)
Risk-driven Model-based Security Testing (RMST) is defined as the combination of security testing and se-
curity risk analysis in which security risk assessment is carried out both before and after the Test Design \&
Implementation step (Figure 12). The first usage (i.e., security risk assessment before the Test Design \&
Implementation step) supports the security testing process by identifying the most important parts of the
system under test, while the second usage (i.e., security risk assessment after the Test Design \& Implemen-

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 21 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

tation step) supports the security testing process by identifying the most important security tests that needs
to be executed.

Step1:	
 Test	

Planning

Step3:	
 Test	

Design	
 &	

Implementation

Step2:	
 Risk	

Analysis

Step6:	
 Test	

Execution

Security	
 Risk	
 Analysis

Risk-­‐driven	
 Model-­‐based	
 Security	
 Testing	
 (RMST)

Step7:	
 Test	

Incident	

Reporting

Step5:	
 Risk	

Analysis

Step4:	
 Test	

Environment	
 Set-­‐
up	
 &	
 Maintenance

Security	
 Risk	
 Analysis

Security	
 Testing	
 Process

Figure 12 Risk-driven Model-based Security Testing process.

The security risk analysis process in Step 2 and Step 5 is equivalent to the security risk analysis process
given in Figure 11.

• Risk-driven Model-based Security Testing (RMST)

Risk-driven Model-based Security Testing (RMST) is model-based security testing that use risk as-
sessment within the security testing process.

The following describes the steps in the RMST process including the input and output for each step in the
process.

Step 1: Test Planning
Test planning here can be described as preparation for further security testing activities in which testing con-
ditions (e.g. procedures, scope, resources, administration, effort) are defined according to security require-
ments. Basically, the test planning is established in terms of ``how to test?'' and ``where to test?''.

• Input: System model, Test policy
• Output: Test plan, Security test requirement

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 22 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Step 2: Risk Analysis
The security risk analysis process in this step is carried out in order to identify the most important parts of the
system that needs to be tested.

• Input: System model, Test policy, Test plan, Security test requirement
• Final Output: Risk, Risk criterion

Step 3: Test Design and Implementation
Based on the risk analysis results from Step 2, the specific test targets are identified. Test models are built
and tests are created from these models.

• Input: System model, Test plan, Security test requirement, Risk, Risk criterion
• Output: Test model, Test, Test procedure

Step 4: Test Environment Set-up and Maintenance
The environment in which tests are executed is established and maintained in this step. Maintenance of the
test environment may involve changes based on the results of previous tests. Where change and configura-
tion management processes exist, changes to the test environments may be managed using these process-
es [31].

• Input: System model, Test plan, Test model, Test, Test procedure
• Output: Test environment model

Step 5: Risk Analysis
The security risk analysis process in this step is carried out in order to identify and prioritize the most im-
portant security tests that need to be executed.

• Input: Test plan, Test model, Test, Security test requirement
• Final Output: Risk, Risk criterion

Step 6: Test Execution
Security tests are prioritized and executed based on the results from the risk analysis in Step 5. The test
execution may be iterative according to the complexity, scope, and attribute of the test targets.

• Input: Test plan, Test model, Test, Test procedure, Test environment model, Risk, Risk criterion
• Output: Test result

Step 7: Test Incidents Reporting
Security testing results are analyzed and validated according to system security test requirements. The eval-
uated security performance of targeting system provides data and input required for further development and
measurements. If test execution is iterative, the test incidents reporting may also be iteratively performed.

• Input: Test result
• Output: Test result analysis

2. A PROCESS FOR TEST-DRIVEN SECURITY RISK ANALYSIS
In this section, we describe a process for test-driven security that has been followed in one of the DIA-
MONDS case studies (the Norse Solutions case study).

Our TSR process is divided into three phases. The goal of Phase 1 is first to establish the context and target
of evaluation, and then conduct a security risk assessment of the target of evaluation. This includes defining
the scope of the assessment, identifying security risks w.r.t. the target of evaluation, estimating and evaluat-
ing the security risks based on likelihood and consequence values. Having discovered security risks in
Phase 1, the analysis proceeds to Phase 2 in which security tests are identified and executed in order to
explore the security risks. Finally, Phase 3 completes the analysis by validating and updating the risk models
based on the security testing results obtained in Phase 2. Additionally, treatments are suggested in order to
mitigate the vulnerabilities identified during Phase 2. The phases are further decomposed into the following
seven consecutive steps:

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 23 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

• Phase 1 Establish context and target of evaluation, and carry out security risk assessment of the
target of evaluation.

o Step 1 Establish context and target of evaluation.
o Step 2 Risk identification.
o Step 3 Risk estimation.
o Step 4 Risk evaluation.

• Phase 2 Generate and execute security tests that explore the risks identified during the security risk
assessment.

o Step 5 Test case generation and prioritization.
o Step 6 Test execution.

• Phase 3 Validate and update the risk model based on the security test results.
o Step 7 Risk consolidation and treatment.

As indicated by Figure 19, the TSR approach is two-folded in the sense that it addresses both security risk
analysis and security testing. Security risk analysis was conducted using the CORAS approach [10]. CORAS
consists of a language, a tool and a method which are collectively referred to as the CORAS approach. The
CORAS language is a customized diagrammatic language for risk modelling. The CORAS tool is a graphical
editor for making CORAS diagrams using the CORAS language. The CORAS method is an eight-step meth-
od for asset-driven defensive risk analysis in which the tool-supported risk modelling language is tightly in-
terwoven. It is beyond the scope of this section to give a full description of the CORAS approach. We there-
fore refer to [10] for a detailed and stepwise explanation. Security testing was carried out in a structured
manner by (1) identifying and prioritizing testable threat scenarios from the total list of threat scenarios identi-
fied during Phase 1, (2) identifying security test cases that address the prioritized testable threat scenarios,
and (3) executing the identified security test cases. Sections 2.1-2.6 gives an explanation of the six consecu-
tive steps in the TSR approach.

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 24 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	

	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	

	
 	
 	

	
 	
 	
 	

Figure 13 Overview of the steps in the process.

2.1 STEP 1: ESTABLISH CONTEXT AND TARGET OF EVALUATION
Step 1 was carried out by performing the first four steps in the CORAS method:

• CORAS Step 1, preparation for the analysis, aims to make the necessary preparations for the actual
analysis tasks based on a basic understanding of the target.

• CORAS Step 2, customer presentation of the target, aims to get the representatives of the customer
to present their overall goals of the analysis, the target they wish to have analyzed, and the focus
and scope of the analysis.

• CORAS Step 3, refining the target description using asset diagrams, aims to ensure a common un-
derstanding of the target of analysis by having the analysis team present their understanding of the
target, including its focus, scope and main assets.

• CORAS Step 4, approval of target description, aims to ensure that the background documentation
for the rest of the analysis, including the target, focus and scope is correct and complete as seen by
the customer.

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 25 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

2.2 STEP 2: RISK IDENTIFICATION
Step 2 was carried out by performing the fifth step in the CORAS method:

• CORAS Step 5, risk identification using threat diagrams, aims to systematically identify threats, un-
wanted incidents, threat scenarios and vulnerabilities with respect to the identified assets.

2.3 STEP 3: RISK ESTIMATION
Step 3 was carried out by performing the sixth and seventh step of the CORAS method:

• CORAS Step 6, risk estimation using threat diagrams, aims to determine the risk level of the risks
that are represented by the identified unwanted incidents (discovered in CORAS step 5).

• CORAS Step 7, risk evaluation using risk diagrams, aims to clarify which of the identified risks are
acceptable, and which of the risks must be further evaluated for possible treatment.

2.4 STEP 4: TEST IDENTIFICATION
The goal of Step 4 is to identify security tests based on the risk analysis results obtained in Step 3. This was
carried out by first identifying threat scenarios that are testable, and thereby identifying security tests for the
testable threat scenarios:

2.4.1 Identifying testable threat scenarios
The threat scenarios that lead up to a specific risk were traced back from the risk until the threat source was
reached (i.e., accidental human threat, deliberate human threat or non-human threat). For each threat sce-
nario that was encountered in each path, it was evaluated whether the threat scenario was testable or not.
By testable threat scenarios, we mean threat scenarios that are testable at the implementation level. Fur-
thermore, this process of identifying testable threat scenarios was strictly constrained by and limited to the
underlying risk analysis results. I.e., it was not explored for other potential threat scenarios.

The following is an example for how this was done. Figure 14 shows a portion of a threat diagram for Norse
Options which has the following elements:

• A deliberate human threat: Hacker.
• Threat scenario 1: Social engineering.
• Threat scenario 2: Cross site scripting (XSS) attack.
• Threat scenario 3: Employee password and username disclosed.
• Threat scenario 4: Unauthorized access to Norse Options employee account.
• An unwanted incident (the risk): Employee information leaks to third party.
• An asset: Confidentiality of client information.

Figure 14 of a threat diagram for Norse Options (without likelihood and consequence values).

By starting with the risk and following the path to the hacker we see two different trace-paths:

• Trace-path 1: The risk → Threat scenario 4 → Threat scenario 3 → Threat scenario 1 → Hacker.
• Trace-path 2: The risk → Threat scenario 4 → Threat scenario 3 → Threat scenario 2 → Hacker.

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 26 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

By considering the threat diagram given in Figure 14, the following can be deduced:

• Threat scenario 4: This threat scenario is quite general in sense that there are many ways to realize
it. It is therefore not directly testable. We continue further in the trace-path.

• Threat scenario 3: One way of realizing threat scenario 4 is if an employee’s password and
username is disclosed by a hacker. Again, there are many ways to realize this threat scenario and it
is therefore not directly testable. We therefore continue further in the trace-path.

• Threat scenario 1: One way of getting an employee’s login credentials is by social engineering. This
is not testable because of the threat scenario’s nature. It is a threat scenario that is not related direct-
ly to the software, but rather a threat scenario that addresses potential vulnerabilities at the organiza-
tional level (policies for handling sensitive information, the employees’ security knowledge, etc.).

• Threat scenario 2: Another way of getting an employee’s login credentials is by performing a suc-
cessful cross site scripting attack. This threat scenario is testable by performing XSS tests.

From the example above, we have identified threat scenario 2 (XSS) as a testable threat scenario.

2.4.2 Identifying security tests
1. All the identified testable threat scenarios were prioritized based on their likelihood values. However,

it is emphasized that the likelihood values were given with a certain degree of uncertainty. The de-
gree of uncertainty was not defined in terms of scales (such as the likelihood and consequence
scales), but was rather considered on-the-fly in qualitative terms.

2. A scale was defined in order to determine which of the prioritized testable threat scenarios were to
be perceived as highest priority. The following is an example. Consider the scale of likelihood values
in Table 1:

Table 1 Likelihood scale

Likelihood Description
Certain Five times or more per year [5,infinity>:1y
Likely Two to five times per year [2,5>:1y
Possible Once per year [1,4>:2y
Unlikely Less than once each two years [1,5>:10y
Rare Less than once per ten years [0,1>:10y

Based on the likelihood values in Table 1, one can for example define that every testable threat sce-
nario that has a likelihood value in the range of possible to certain must be perceived as highest pri-
ority. Using this perception, one can elicit the highest priority testable threat scenarios for further ex-
ploration.

3. Based on the highest priority-scale, the testable threat scenarios were elicited.
4. Security tests that address each of the elicited testable threat scenarios were created. This was done

by considering the nature of the testable threat scenario and then creating the tests based on infor-
mation collected from sources like the Open Web Application Security Project2 and MITRE’s list of
Common Vulnerabilities and Exposures3 (CVE). E.g., XSS tests were created for threat scenario 2 in
Error! Reference source not found..

2.5 STEP 5: TEST EXECUTION
The security tests were carried out automatically, semi-automatically and manually. Before explaining how
this was done it is necessary to give a short explanation of the tools that were used:

2 https://www.owasp.org/index.php/Main_Page
3 http://cve.mitre.org/

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 27 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

2.5.1 Tools
• IBM Rational Software Architect: IBM Rational Software Architect is a modelling and development

environment that uses the Unified Modelling Language (UML) for designing architecture for C++ and
Java 2 Enterprise Edition (J2EE) applications and web services. Rational Software Architect is built
on the Eclipse open-source software framework and includes capabilities focused on architectural
code analysis, C++, and model-driven development (MDD) with the UML.

• Smartesting CertifyIt: Smartesting CertifyIt is a test design automation tool that creates tests based
on system models (i.e., model based testing). It has built-in integrations with Micro Focus, HP and
IBM solutions.

• Selenium: Selenium is a suite of tools specifically for testing web applications. The ones used in this
case were Selenium IDE, Selenium Server and Selenium Client Drivers. Selenium IDE is a Firefox
plug-in that does record-and-playback of interactions with the browser. The Selenium Server is
needed in order to run either Selenium RC style scripts or Remote Selenium WebDriver scripts. The
Selenium Client Driver is necessary in order to create scripts that interact with the Selenium Server
or create local Selenium WebDriver scripts (e.g., in order to run the scripts directly from Eclipse).

• OWASP WebScarab: WebScarab is a framework for analysing applications that communicate using
the HTTP and HTTPS protocols. WebScarab has several modes of operation, implemented by a
number of plugins. In its most common usage, WebScarab operates as an intercepting proxy, allow-
ing the operator to review and modify requests created by the browser before they are sent to the
server, and to review and modify responses returned from the server before they are received by the
browser. WebScarab is able to intercept both HTTP and HTTPS communication. The operator can
also review the conversations (requests and responses) that have passed through WebScarab.

• Eclipse: Eclipse is a multi-language software development environment comprising an integrated
development environment (IDE) and an extensible plug-in system.

• Wireshark: A tool for capturing and analyzing network traffic supporting numerous communication
protocols.

Tool justification
The approach to risk based security testing in the case study presented in this section is model-based. It was
therefore necessary to utilize tools that have the ability to model parts of the system under test (SUT) and
create the tests from the model. IBM Rational Software Architect (RSA) has the ability to model the system
under test and Smartesting CertifyIt has the ability to generate JUnit interfaces (which can further be im-
plemented as functional tests) based on the model. Neither IBM RSA nor Smartesting CertifyIt is a security
specific tool, but the combination of these tools makes it possible to create functional tests based on a model
of the SUT. Furthermore, by implementing security specific properties in the tests that are generated by
Smartesting CertifyIt (e.g., security specific test-data), it is possible to create some security specific tests.
However, it is emphasized that these types of security tests are limited to traditional functional tests in nature
– i.e., the only difference between a traditional functional test and a security test that is created with the help
of IBM RSA and Smartesting CertifyIt is that security specific properties are added to the functional tests. It
is, e.g., not possible to perform security tests that intercept with the http/https requests and responses, which
is an essential tool property when performing security tests on web-based applications.

The tests that were generated by Smartesting CertifyIt were automated by using the Selenium API in the
tests that were implemented. This made it possible to automatically execute the tests via a Web Browser
from Eclipse. Eclipse was used to implement and execute the tests.

OWASP WebScarab has many functions for executing semi-automatic tests. It was used to carry out the
tests that could not be fully automated. In particular, it was used to carry out the tests that required intercep-
tion of the http/https requests and responses.

Wireshark was used to execute the tests that required network traffic analysis for other protocols than HTTP
and HTTPS. In line with WebScarab, Wireshark made it possible to carry out the security tests that could not
be fully automated.

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 28 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

2.5.2 Execution
1. Security tests that could be automated were carried out in the following way (see Figure 15):

a. A model was created of the part of the system under test that was addressed by a given se-
curity test. The model was created using IBM Rational Software Architect.

b. Junit tests were created (in means of Java interfaces) based on the model using Smartesting
CertifyIt.

c. The tester implemented the security tests using the Junit test interfaces. The Selenium Web
Application Testing System’s API was also used in the tests that were implemented. This
API was necessary in order to execute the tests automatically via a Web Browser (in this
case, Firefox).

d. The tests were executed directly from Eclipse. At this stage, the tests were automated and
could be run by “one-click” from Eclipse.

2. Security tests that could not be fully automated, but could be executed with the help of tools, were
carried out using OWASP WebScarab and Wireshark.

3. Security tests that could neither be automated nor semi-automated were explored and carried out
manually using a Web Browser.

a) Create
models using

IBM RSA

b) Generate JUnit tests
(based on the models)

using Smartesting
CertifyIT

c) Implement
the tests

using Eclipse

d) Run the
tests using

Eclipse

Figure 15 Test automation.

2.6 STEP 6: RISK CONSOLIDATION AND TREATMENT
Step 6 was carried out partly in line with the eighth and final step of the CORAS method.

• CORAS Step 8, risk treatment using treatment diagrams, aims to identify and analyze possible
treatments for the unwanted incidents that have emerged. Treatments are assessed with respect to
their cost-benefit evaluation, before a final treatment plan is made.

More specifically, the following was carried out:

1. Based on the security test results, the likelihood values of each testable threat scenario were updat-
ed. Consequently, this changed the initial risk picture, and thereby the values of the risks.

2. Risks that contributed to the same overall risk were combined.
3. Treatments were identified for each testable threat scenario that had successfully been carried out

(i.e., the threat scenarios that were actually realized). The treatments were suggested based on:
a. The testers’ knowledge for how to mitigate a given vulnerability that was addressed by a giv-

en threat scenario.
b. Recommendations collected from sources like OWASP and CVE.

4. The treatments were given in form of a discussion in the final meeting (see Error! Reference
source not found.), and are given in writing in this section.

3. AN EVALUATION OF A PROCESS FOR TEST-DRIVEN SECURITY
RISK ANALYSIS BASED ON THE NORSE SOLUTIONS CASE STUDY
Security risk assessment (SRA) is a process that is carried out in order to identify and assess security specif-
ic risks. Traditional risk assessments often strongly rely on expert judgment for the identification of risks and
their causes and the estimation of their likelihood and consequence. The outcome of these kinds of risk as-
sessments are therefore strongly dependent on SRA participant's background, experience, and knowledge,
which in turn reflects an uncertainty in the correctness of the SRA results.

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 29 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

In order to validate the correctness of the SRA results, the SRA process can be complemented by other
ways of gathering information of relevance to the assessment other than relying on expert judgement by the
SRA participants. One such approach is to combine risk assessment with security testing following the steps
described

1) Establish context and target of evaluation, and carry out security risk assessment of the target of evalua-

tion relying mostly on expert judgement from the SRA participants.
2) Generate and execute security tests that explore the risks identified during the security risk assessment.
3) Validate and update the risk model based on the security test results.

We refer to this approach as Test-driven Security Risk Assessments (TSR).

We present an evaluation of a TSR process based on the experiences from case study that was carried out
in a period of four months, between March 2011 and July 2011. The target system analyzed is a multilingual
Web-based e-business application. The system serves as the backbone for the system owner's business
goals and is used by a large number of users every day. The system owner, which is also the client that
commissioned the case study, required full confidentiality. The results that are presented in this section are
therefore limited to the experiences from applying the TSR approach.

The objective of the evaluation is to assess how useful testing is for gaining confidence in the correctness
the risk models produced in the risk assessment (phase 1 above). To make the evaluation precise, we have
specifically focused the degree to which the testing yielded information that cause us to change the risk
model. Our overall hypothesis is that

The risk model created before testing (in step 1 above) is equal to the risk model after testing (step 3) above.

If the hypothesis is false, then this means that new information was obtained in the testing step that resulted
in the risk model having to be updated/corrected. Our underlying assumption is that this would indicate that
process of performing the tests was useful. If the hypothesis is true however, then we cannot, on the basis of
this fact alone, conclude that the testing was or was not useful.

Our evaluation suggests that the hypothesis is false. In the case study, the risk model had to be updated
after testing. In particular many of the likelihood values of the threat scenarios and risk had to be changed.
Moreover, the testing uncovered vulnerabilities that would never have been uncovered in the risk assess-
ment phase (phase 1 above), regardless of how much effort we would have spent in this phase.
We therefore believe that the combination of risk assessment and testing is useful.

The rest of the section is structured as follows: Section 3.1 describes the research method of the evaluation
and our hypotheses. Section 3.2 gives an overview of the TSR process used in the case study.
Section 3.3 describes the case study results. Section 3.4 provides an evaluation of the experiences and re-
sults, with respect to the identified hypotheses. Finally, Section 3.5 concludes the evaluation.

3.1 RESEARCH METHOD AND HYPOTHESES
The basis of our evaluation is to compare the risk models produced before and after testing. In order to do
this, we first make precise what we mean by a risk model, and what we mean by risk models being different.

3.1.1 Risk models
Risk models are created during the risk assessment phase. These models contain the identified risks as well
as other information that is relevant for the assessment such as the cause of risks and how likely it is that
these causes will occur and so on.

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 30 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

The kind of risk models that were produced in the case study were CORAS risk models. These were con-
structed on-the-fly during a series of work shops. All the information there was based on expert judgement,
mostly from the custom on whose behalf the analysis was conducted.

As illustrated in by the example in Figure 16, a CORAS risk model is a directed acyclic graph where every
node is of one of the following kinds:

• Threat A potential cause of an unwanted incident.
• Threat scenario A chain or series of events that is initiated by a threat and that may lead to an un-

wanted incident.
• Unwanted incident An event that harms or reduces the value of an asset.
• Asset Something to which a party assigns value and hence for which the party requires protection.

Note that risks can also be represented in a CORAS risk model, but these correspond to pair of unwanted
incidents and assets. If an unwanted incident harms exactly one asset, as is the case in Figure 16, then this
unwanted incident will represent a single risk. In the Norse case study, all unwanted incidents that were iden-
tified each harmed exactly one asset, thus every unwanted incident corresponded to one risk. Throughout
this section, we will therefore use the terms unwanted incident and risk interchangeably.

A relation in a CORAS model may be of one of the following kinds:

• Initiates relation going from a threat A to a threat scenario or unwanted incident B, meaning that A
initiates B.

• Leads to relation going from a threat scenario or unwanted incident A to a threat scenario or un-
wanted incident B, meaning that A leads to B.

• Harms relation going from an unwanted incident A to an asset B, meaning that A harms B.

Relations and nodes may have assignments, in particular

• Likelihood values may be assigned to a threat scenario and unwanted incident A, estimating the
likelihood of A occurring.

• Conditional probabilities may be assigned leads to relations going from A to B, estimating the
probability that B occurs given that A has occurred.

• Consequence values may be assigned to harms relations going from A to B, estimation the conse-
quence the occurrence of A has on B.

• Vulnerabilities may be assigned to leads to relations going from A to B, describing a weakness, flaw
or deficiency that opens for A leading to B.

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 31 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 16 Example of a CORAS risk model.

3.1.2 Difference between risk models
Two CORAS risk models are equal if they contain the same nodes, relations, and annotations. Otherwise
they are not equal. Let RMB be the risk model before testing, and RMA be the risk model after testing, then
we distinguish between 3 different kinds of changes

• Add A node or reference in RMA has been added if it is not in RMB
• Delete A node or reference in RMB has been deleted if it is not in RMA
• Edit A node or reference in both RMB and RMA has been edited if its assignment in RMB or RMA is

different.

3.1.3 Hypotheses
Our overall hypothesis is that the risk models before and after testing are equivalent. Having made precise
what we mean by risk model difference, we break this hypothesis down accordingly:

• H1 No risk elements have been added after testing.
• H2 No risk elements have been deleted after testing.
• H3 No risk elements have been edited after testing.

3.2 OVERVIEW OF PROCESS FOR TEST-DRIVEN SECURITY RISK ANALYSIS
This section presents the process in which the case study was carried out. We give a chronological outline of
each meeting that took place in terms of date, participation, preparation, content and the time spent.

In total six meetings took place. The two first meetings primarily focused on motivating the analysis by defin-
ing the goals that were to be achieved by the case study, the context and target of analysis, and the focus
and scope of analysis. The third meeting focused on concretizing the scope of analysis, the assets that were
to be addressed and their belonging risk evaluation criteria. The fourth meeting was dedicated to identify
risks and estimate the risk values using the predefined risk evaluation criteria. The fifth meeting focused on
identifying security tests. The security tests were identified based on the risk analysis results from the fourth
meeting. Finally, in the sixth meeting, the analyst presented the security test results (the security tests were
executed between the fifth and the sixth meeting) in addition to the treatments for each security test that had
failed. The security tests that had failed led to an update of the initial risk analysis results. The updated risk
analysis results were also presented in the sixth meeting.

outlines the process of the analysis. The first column specifies the sequence number for each meeting. The
second column shows the dates in which the meetings were carried out. The third column lists the partici-

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 32 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

pants (C denotes participants from the customer organization, while A denotes participants from the analysis
team). The fourth column describes the preparations that were carried out prior to each meeting. The fifth
column describes the contents and achievements in each meeting. Finally, the sixth column shows the ap-
proximate time spent (in man-hours) for each meeting. The letter ``T'' in the sixth column denotes the total
number of hours spent by all participants.

Table 2 Overview of the work shops held during the assessment

Me
etin
g

Date Participants Preparation Contents Hour
s

1 28
March
2011

C: One
domain
expert. A:
The ana-
lyst. Two
domain
experts.

The analyst prepared
an initial suggestion
of the TSR method.

The customer presented the needs and chal-
lenges regarding security threats and the
assets that needed special attention during
the TSR. A brief presentation of the TSR
method was given by the analyst, followed by
a discussion of how it could be conducted in
the case study. The forthcoming meetings
were planned. Formalities regarding commu-
nication channels and information exchange
were clarified.

T:2

2 12
April
2011

C: One
manager.
One do-
main ex-
pert. One
developer.
A: The
analyst.
The secre-
tary. Two
domain
experts.

The analyst received
the input requested:
system documenta-
tion and user docu-
mentation. The doc-
umentation was re-
viewed prior to the
meeting.

The customer presented the target and the
overall goals they whished to achieve from
the TSR. The scope of the target was speci-
fied together with the analysis team. The
analyst and the secretary gathered infor-
mation during the meeting for further study.

T:3

3 09
May
2011

C: One
domain
expert. One
developer.
A: The
analyst.
The secre-
tary. One
domain
expert.

A high-level model of
the target of analysis
was modelled. A
preliminary set of
assets and their be-
longing risk evalua-
tion criteria was doc-
umented.

The analyst presented the high-level model
of the target of analysis, and the preliminary
set of assets and their belonging risk evalua-
tion criteria. The customer provided with cor-
rections and adjustments. The secretary
noted the corrections and the adjustments
given by the customer.

T:3

4 20
May
2011

C: One
domain
expert. A:
The ana-
lyst. The
secretary.

The target of evalua-
tion, scope, scales
and risk evaluation
criteria were updated
based on the out-
comes of the previ-
ous meeting.

The customer approved the focus, scope,
scales and risk evaluation criteria. The ana-
lyst identified risks and estimated the risk
values together with the customer.

T:6

5 27
May
2011

C: One
domain
expert. A:
The ana-
lyst. The

A preliminary list of
evaluated risks was
documented based
on the outcomes of
the previous meet-

The preliminary list of risks was reviewed and
revaluated (if it was necessary) together with
the customer. Security tests were identified
based on the evaluated risks.

T:6

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 33 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

secretary. ing.

6 07 July
2011

C: One
domain
expert. One
developer.
A: The
analyst.
The secre-
tary.

The identified securi-
ty tests were carried
out and the results
were documented.
Treatments were
documented for each
security test that had
failed. The risk anal-
ysis results were
updated according to
the security test re-
sults.

The analyst presented the security test re-
sults in addition to the treatments for each
security test that had failed. The updated risk
analysis results were presented and re-
viewed together with the customer.

T:2

3.3 RESULTS
In this section, we describe the differences between the risk models before and after testing.

0
5

10
15
20
25
30
35
40
45
50

Before

After

Figure 17 Number of risk model elements before and after testing.

Figure 17 Number of risk model elements before and after testing shows the number of risk model elements
in the risk models before and after testing. Only one element was deleted after testing (a vulnerability),
hence the figure shows that four new vulnerabilities were added after testing, but no new threats, threat sce-
narios, unwanted incidents, or assets were added.

Figure 18 shows the number of threat scenarios and risks that were tested. As can be deduced from the
figure, 33% of the threat scenarios were tested, and 42% of the risks were tested. Note however, that we
have distinguished between those model elements that were directly tested from those that were not. We
say that a threat scenario T was directly tested if T was used a basis for deriving tests. A threat scenario or a
risk TR is indirectly tested if there is a threat scenario or a risk leading up to TR that was directly or indirectly
tested. From the figure we can see 14% of the threat scenarios were directly tested, and that none of the
risks were directly tested.

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 34 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

0
5
10
15
20
25
30
35
40
45
50

Total Total	
 tested Total	
 directly	

tested

Threat	
 scenarios

Risks

Figure 18 Number of risks and threat scenarios tested and updated.

In Figure 19 shows the difference between the threat scenarios and risks that were tested before and after
testing. In the figure, each threat scenario and risk TR has a label of the form i / j which means that TR had a
likelihood value of i before testing, and j after testing. The likelihood scale that was used in the case study
can be mapped to a number between 1 and 5 where 1 represents the most unlikely value and 5 represents
the most likely value.

All the threat scenarios and risks whose likelihood values were edited after testing are in the Figure 19 given
a darker colour than those threat scenarios and risks that were not edited. Note that all except one risk ele-
ment whose likelihood values were edited after testing were estimated to me more likely after testing than
before testing.

In Figure 19 the threat scenarios that were directly tested are represented by ellipses with a dotted outline;
all the other elements of the diagram are indirectly tested. It can be noted that the level of indirection from
the directly tested threat scenarios to the risks is quite large.

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 35 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

T1
3 / 2

A1
2 /2

A2
3 / 3

C1
2 / 3

C2
2 / 3

C3
2 / 3

C4
3 / 3

C5
2 / 2

C7
2 / 2

I1
1 / 3

I2
1 / 3

I3
1 / 3

I4
1 / 1

I8
2 / 2T4

3 / 3

T6
2 / 3

T7
2 / 3

T8
3 / 3

T9
3 / 3

T10
2 / 3

T11
1 / 1

T13
3 / 3

T14
2 / 3

T22
2 / 2

T23
2 / 2

T19
2 / 2

T37
1 / 3

Likelihood value edited after testing

Likelihood value not edited after testing

Tested directly

Tested indirectly

Figure 19 Difference between risk models before and after testing.

3.4 DISCUSSION

3.4.1 Hypothesis 1
Based on the discussion in Section 3.3 and the numbers in Figure 17, we know that new vulnerabilities were
added to the risk model after testing, and that no other kinds of risk elements were added.

Why did the testing only yield new information about the vulnerabilities? The main reason for this is that the
tests were designed from the threat scenarios. The threat scenario would typically describe some kind of
security attack and the purpose of the tests were to investigate whether the system had some vulnerability
that could be exploited by the attack. In other words, the tests were designed to uncover vulnerabilities; not
unknown assets, threats, threat scenarios, or risks. These elements were instead part of the context in which
the testing was performed.

Recall that an asset is something that is of value for the party, and that can be harmed by a risk. If a party
has no assets, then there is no reason to conduct a risk assessment. For this reason, assets are always
identified in the beginning of the risk assessment, before the risks are identified. In our experience, the pro-
cess of identifying the risks has never led to the identification of new assets because the assets are then part
of the context of the risk identification. The same is also true for the testing.

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 36 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

The argument is similar regarding threat. A threat is a potential cause of an unwanted incident such as a
hacker, an insider or a virus, and the testing is performed with regards to the identified threats. It therefore
seems unlikely that the testing would uncover additional threats.

In principle, we cannot rule out that it would be possible that the test results could yield information that
would lead to the identification of new threat scenarios or risks. For instance, it might be the case that a
threat scenario may be refined (i.e. split up into more than one threat scenarios) after testing, or lead to the
identification of an unwanted incident that had not been previously thought of. However, as long as the tests
are designed to uncover vulnerabilities, we believe that this would be unlikely.

Would it make sense to design tests that would uncover new risks or threat scenarios instead of vulnerabili-
ties? For automated or semi-automated security testing, we do not believe that it would. Since threat scenar-
ios correspond attacks, this would imply performing security testing to uncover new attacks that were previ-
ously unknown. This process be possible in theory, but in practise we believe that it would be hard to auto-
mate.

In summary, hypothesis H1 is false, since new vulnerabilities were added to the risk model after testing.
However, no other risk element kinds were added after testing, and we believe that this will be the case for
most assessments following our approach.

It is worth noting that vulnerabilities uncovered by testing in the case study could never have been uncov-
ered if we had performed a risk assessment alone (without doing the testing), regardless of how much effort
we would have spent. This is because the testing uncovered issues which only appeared in extremely specif-
ic circumstances which could not have been reproduced without execution the system under analysis.

3.4.2 Hypothesis 2
Based on the discussion in Sect. 3.3, we know that the testing resulted in the deletion of exactly one risk
element - a vulnerability. Furthermore, we believe that this result is generalizable. That is, in general, threats,
threat scenarios, risks and assets are unlikely to be deleted after testing, whereas vulnerabilities may be
deleted.

The reason why we deleted a vulnerability after testing was that the testing provided evidence that a poten-
tial vulnerability identified in the risk assessment phase was actually not present in the system. This led us to
remove the vulnerability from the risk model. We also believe that in general, testing can result in the dele-
tion of vulnerabilities, since the tests can be designed to check whether a vulnerability is actually present in
the system or not.

The reason why threats and assets are unlikely to be deleted after testing is the same as for hypothesis H1.
That is, the assets and threats are part of the context in which the testing is performed, and the testing is
therefore unlikely to yield information about this context.

As for threat scenarios and unwanted incidents, these are assigned likelihood values. Therefore, there will
never be a need to delete these from the risk model after testing. Instead of deleting them from the risk mod-
el, we would instead assign to them a low likelihood value.

In summary, hypothesis H2 is strictly speaking false, since one vulnerability had to be deleted.

3.4.3 Hypothesis 3
As documented in Figure 19, 11% of the threat scenarios and 13% of the risks were edited after testing.
Moreover, only likelihood values were edited after testing.

For all risk elements that were edited (with the exception of one), the likelihood value was increased after
testing, i.e. the risk element was believed to be more likely after testing than before testing. The reason for

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 37 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

this was that the testing uncovered vulnerabilities that were previously unknown, and that led to the belief
that certain threat scenarios were more likely to occur than believed before testing.

For one of the threat scenarios, the likelihood values were decreased after testing as a result of one vulnera-
bility being deleted.

In general, we believe that testing will uncover information that may cause the likelihood values of threat
scenarios and unwanted incidents to edited after testing.

The testing did not result in the consequence values that unwanted incidents has on assets being edited.
The reason for this is that all the tests were designed to uncover information about vulnerabilities that would
increase or decrease the likelihood of a successful attack; the consequence of a successful attack was al-
ready known in advance. Is this result generalizable? We believe it is. As long as all the risks have been
identified in before testing, their consequences can be estimated before testing, and it is unlikely that the
testing will uncover information which will cause the consequence values to change.

In summary, we can conclude that hypothesis H3 is false because the likelihood values of several threat
scenarios and unwanted incidents had to be edited after testing. Furthermore, we believe that it is unlikely
that testing will uncover information that results in the consequence values of risks to be edited.

3.5 CONCLUSION
We have described an evaluation of a process for test-driven security risk assessment (TSR) based on our
experiences from applying this process in a case study. The objective of the evaluation was to evaluate how
useful testing is in gaining confidence in the correctness of the risk models produced in the risk assessment
phase of the TSR process. To make the evaluation precise, we analysed the difference between the risk
model produced before testing and the risk model produced after testing. Our overall hypothesis was

The risk model created before testing is equal to the risk model create after testing.

Based on the results of our evaluation, we conclude that the hypothesis is false. The process of testing
yielded information which led to a change in the risk model created before testing. Specifically, four vulnera-
bilities were added to the risk model, one vulnerability was deleted, and the likelihood values of 10\% of the
threat scenarios and 19\% of the risks were edited after testing.

We believe that the testing was useful in the sense that it yielded a more accurate risk model. But more then
this, the testing uncovered vulnerabilities that would never have been uncovered in the risk assessment
phase, regardless of how much effort we would have spent. In other words, if the risk assessment phase had
been extended with the effort spent on testing, we would not have uncovered the vulnerabilities that were
uncovered in the testing phase.

4. EXTENSION FOR THE CORAS RISK ANALYSIS METHOD
This chapter proposes a method to increase the efficiency of the risk analysis process and outlines how the
results of the CORAS risk analysis can be reused and combined. It introduces a well-defined template library
as a starting point for the risk analysis as well as new models, diagram types and procedures as an exten-
sion of the CORAS method.
Taking risk analysis artefacts generated for the individual base components as input, probability values for
unwanted incidents of complex systems can be calculated if the relations between these artefacts are mod-
elled correctly. This extension is predestined for analysing large scale systems consisting of heterogeneous
components, which no single analyst team could handle.
In many applications in varying market sectors, including eCommerce, eGovernment, and eHealth, perfect
security cannot be achieved. Trust allows people to use such applications though there are remaining risks.
Before taking risks, it is reasonable to carefully analyse the chances, the potential benefits and the potential
losses. Those offering security critical applications or services can use risk analyses to treat potential weak-

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 38 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

nesses in their products. Communicating the identified remaining risks honestly can be important to create
trust. However, risk analysis might be difficult and expensive. This chapter therefore introduces new con-
cepts to reuse and combine results of the CORAS method for risk analysis as well as make the whole risk
analysis process more efficient.

4.1 BACKGROUND

4.1.1 Information Security Indicators
The Information Security Indicators (ISI, [20]) specification is currently being produced by an ETSI Industry
Specification Group4. The standard aims to assess the security posture of an organization.
In order to measure the effectiveness of an organization’s security policy, the monitoring of nearly 100 opera-
tional security indicators of both internal and external origin is proposed. For each indicator, means and tools
for the detection of relevant events are given, as well as the respective detectability level ranging from 1
(very difficult) to 3 (relatively easy). As additional information, the state-of-the-art detection ratio is expressed
as the monthly frequency of the occurrence of an event or as the percentage against a common basis.
The 94 indicators are grouped into the following four categories and subcategories:

• Indicators with Security Incidents
o External intrusions and attacks
o Malfunctions
o Usurpation of internal rights or identity
o Other abnormal internal behaviours (general or specific)
o All incident categories

• Indicators with Vulnerabilities of a Behavioural and Technical Kind
o Behavioural vulnerabilities
o Software vulnerabilities
o Configuration vulnerabilities
o Global security framework technical vulnerabilities

• Indicators with Vulnerabilities Regarding some Key Processes
• Indicators as Regards Impact Measurement

The ISI indicators were employed for the template library as they provide a catalogue of well-defined vulner-
abilities and incidents that can be used as a starting point for risk analysis.

4.1.2 Common Criteria for Information Technology Security Evaluation
The Common Criteria for Information Technology Security Evaluation (CC, [21]) are a common framework
for the certification of IT-security products. The ISO standard (ISO/IEC 15408) originated out of well-known
international standards like Orange Book (1985), ITSEC (1991) and the Canadian Criteria (1993). The cur-
rent version is Version 3.1, rev. 3 from July 2009.
The professed goal of the CC is to obtain a comparability of evaluation results. This is achieved via the
standardised Common Methodology for Information Technology Security Evaluation (ISO/IEC 18045, [22])
which was passed as part of the International Recognition of National Evaluation Results through the Com-
mon Criteria Recognition Arrangement (CCRA). The main document as part of a CC-evaluation is the Secu-
rity Target, containing threats, security objectives and Security Functional Requirements (SFRs). All key
activities during an evaluation are based on this document which outlines the scope of the security function-
ality. The activities most relevant to our proposed approach are threat analysis, functional testing and vul-
nerability assessment.
The SFRs are to be selected from a generic list of security requirements as defined in CC Part 2. The SFRs
are grouped into eleven classes:

FAU: Security Audit
FCO: Communication
FCS: Cryptographic Support
FDP: User Data Protection

4 At the time of writing, the Group Specification still has the status draft.

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 39 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

FIA: Identification and Authorization
FMT: Security Management
FPR: Privacy
FPT: Protection of the TSF
FRU: Resource Utilization
FTA: TOE Access
FTP: Trusted Path / Channel

The classes consist of several families which in turn consist of components. Figure 20 outlines this general
class-family-component structure and illustrates both dependencies between components (e.g. Component
2 of Family 1 is hierarchical to Component 1) as well as independency (e.g. Component 1 and Component 2
of Family 2 are independent).

Figure 20 General Class Structure.

The Security Functional Requirements as defined by the Common Criteria standard were employed for the
template library as they provide well-defined functional requirements that can be utilized as treatments dur-
ing risk analysis.

4.1.3 Risk analysis with FTA, FME(C)A and probability theory
Fault tree analysis (FTA) [14] is widely used in the process of risk analysis for critical systems like airplanes
or nuclear power plants and hence well-studied [6]. It is a deductive, top-down approach to study how faults
can be triggered by sets of other incidents (faults). FTA considering temporal effects is called dynamic FTA.
Analysing potential failure paths, FTA makes it possible to determine the probability that a single top level
fault occurs. All possible paths have to be taken into consideration by the analysts. Starting at the top level
fault, it might be very difficult to recognize all initiating faults that could somehow cause the top level fault.
In contrast, failure modes and effects (and criticality) analysis FME(C)A [4] is commonly used as an induc-
tive, bottom-up approach. FME(C)A is better for identifying initial failures than FTA, but not for getting a
complete analysis of a complex failure. It can be beneficial to do both, FME(C)A and FTA because they have
complementary strengths. In [1], a combination of both is suggested as “Bouncing Failure Analysis (BFA):
The Unified FTA-FMEA Methodology”.
Based upon [12], for calculating probability values, the following notations and equations/formulas will be
used in this chapter: The probability of some incident X is noted as P(X). The conditional probability for inci-
dent X given that it is known that incident Y occurs is noted as P(X | Y). The probability P(X ∩ Y) that both
incidents X and Y occur can be calculated with P(Y) and P(X | Y):

)()()(YYXYX ΡΡΡ ∗=∩ (1)

The probability)(YX ∪Ρ that at least one of two incidents X, Y occurs is:

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 40 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

)()()()(YXYPXYX ∩−+=∪ ΡΡΡ (2)

If X and Y are statistically independent (i.e. P(X | Y) = P(X) and P(Y | X) = P(Y)), then:

)()()(XXYX ΡΡΡ ∗=∩ (3)

)()()()()(XXYXYX ΡΡΡΡΡ ∗−+=∪ (4)

If P(X | Y) = 1 and P(Y | X) = 1, then:

)()()()(XXYXYX ΡΡΡΡ ==∪=∩ (5)

The probability value V for an incident that has to be triggered by at least threshold Ψ of n statistically inde-
pendent incidents each having the probability p can be calculated using the following binomial formula [13]:

(1) ∑
=

−−∗∗⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

n

k

knk pp
k
n

V
Ψ

1)((6)

There are multiple algorithms known for calculations in fault trees – including the binary decision diagram
based (BDD) algorithm presented in [11] and DIFtree [7] using BDD and additionally Markov chains. Various
software tools support FTA, e.g. Galileo [5].

4.1.4 Risk analysis with the CORAS method
In contrast to the pure failure analytic methods FTA/ FME(C)A, the model based CORAS method [8] sup-
ports the entire process of risk analysis “from asset identification to risk treatment” [10].
The CORAS method consists of eight steps. Following this guided step by step procedure, it is possible to
identify, analyse and evaluate assets, threats, risks and possible treatments. During that process, different
types of diagrams with intuitively understandable graphic symbols are generated as results. CORAS dia-
grams can be translated to English paragraphs [3]. Besides the completeness, the easy comprehensibility of
the CORAS artefacts makes the CORAS method a good choice for analysing the risks of the S-Network
because communicating the risks is essential for creating trust in the S-Network.
In this chapter, the CORAS terminology will be used. Threat diagrams and risk diagrams will be used and
extended.

4.1.5 CORAS risk analysis complexity and difficulty
Many computer programs and services are composed of different components – developed, produced and
operated by different entities. There is no need to reinvent the wheel or recreate things that already exist.
Often, the internals of existing components do not have to be studied in detail to be able to utilize them. It
should be enough to look at the public interfaces and their documentation, for example.
Each individual component might eventually have certain risks. For the risk analysis of an entire complex
system, to identify the risks inherited from the components it consists of, it would be necessary to get a deep
understanding about the internals of these base components. Probably only the producers or operators of
each base component will have the required knowledge. Additionally, it would not be efficient to analyse the
same base component that is used in many systems over and over again for each system containing that
component.
If risk analysis results for individual components were reusable and if they could be composed along with the
components to get the risks of complex systems consisting of these components, there would be no need to
analyse them again and again. In [2] “Dependent CORAS Diagrams” are suggested to deal with dependen-
cies of different components. But these diagrams are only appropriate to hide some complexity from the
“context scenario”. Hence, in [10] chapter 16, “Dependent CORAS” is only mentioned for dealing with as-
sumptions about the environment, which could then be replaced with risk analysis results about the environ-
ment. There is not yet a satisfying solution for composing CORAS risk analysis results in not trivial ways.

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 41 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

4.2 A TEMPLATE LIBRARY FOR MODEL-BASED RISK ANALYSIS
In addition to the approach described in the following Chapters 4.3 and 4.4, a generic template library for risk
analysis based on CORAS was developed. The goal of this library was to make available to risk analysts a
predefined set of CORAS diagrams to facilitate their own risk analysis. Since every system has risks that are
inherently system-specific, the template library is not intended to cover every aspect of a systems risk analy-
sis. The predefined template diagrams nevertheless have the claim of playing an important part during risk
analysis as they on the one hand contain well-defined risks relevant for most of today’s systems and on the
other hand propose actions to treat them. These treatments can in turn be associated with Test Patterns,
which help increase the level of test automation. A first concept for tracing the CORAS treatments to Test
Patterns is described in chapter 4.5. An in-depth description of Test Patterns is given in WP4.1.

The following two sections illustrate how Indicators for Security Incidents (ISIs) and Security Functional Re-
quirements (SFRs) were employed as a starting point for the definition of a generic CORAS-Model to simplify
model-based risk analysis (4.2.1) and the exemplary application of the resulting template library to two DIA-
MOND case studies (4.2.2).

4.2.1 Employing ISI and CC for Model-Based Risk Analysis
In order to develop a generic template library applicable to varied domains (automotive, banking, etc.), cata-
logues of well-defined vulnerabilities, threat scenarios and treatments were needed. For the first two, the
Information Security Indicators were chosen, for the latter the Security Functional Requirements as defined
in the Common Criteria were selected. Unwanted incidents and assets were deemed too company-
dependent to allow any useful suggestions. Following the categorization of indicators proposed by the ISI
group specification and adding some of our own, the following seven template diagrams were defined for the
template library:

• TD1. External Intrusions and Attacks,
• TD2. Malfunctions,
• TD3. Usurpation of Internal Rights or Identity,
• TD4. Malicious Behaviour of Users and Administrators,
• TD5. Security Critical User Behaviour,
• TD6. Usage of Insecure Protocols/Software and
• TD7. Insufficient Password Policies/Practices.

The definition of the diagrams followed a four-step process:
Selection: The vulnerabilities and incidents best suited for risk analysis were selected from the complete list
of 92 proposed security indicators. One such indicator is the incident INC21 Downtime or malfunction of the
trace production function in the category Malfunctions.
Mapping: Both were then mapped to CORAS vulnerabilities and threat scenarios. As can be seen from , this
is not a 1:1 mapping. ISI vulnerabilities were mapped to CORAS vulnerabilities, ISI incidents to CORAS
threat scenarios and vice versa. This is due to the definition of both differentiating slightly between the group
specification and CORAS and will be discussed in a future meeting of the ISI group.
Enrichment: Whenever possible, relevant threat(s) were identified from the indicator description. At times,
the description text of incidents also named specific vulnerabilities that were added to the diagram, e.g. Un-
lawful Voluntary Stoppage which could lead to the incident INC21 (see).
Completion: The resulting threat diagrams were enhanced by manually mapping the vulnerabilities and
threat scenarios to Security Functional Requirements from the Common Criteria catalogue that were best
suited to treat them. One such requirement is FAU_STG.3 with which one can specify actions to be taken if a
threshold on the audit trail is exceeded:

The TSF5 shall [assignment: actions to be taken in case of possible audit storage fail-
ure] if the audit trail exceeds [assignment: pre-defined limit].

5 TSF: TOE security functionality – Combined functionality of all hardware, software, and firmware of a TOE (target of
evaluation) that must be relied upon for the correct enforcement of the SFRs.

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 42 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

The result of this process is depicted in in the form of an excerpt from the Malfunctions dia-
gram. The three defined threats are IT-Infrastructure (non-human threat), Hostile Administrator
(deliberate threat) and Administrator (accidental threat). Together with the three vulnerabilities
System Malfunction, Unlawful Voluntary Stoppage and Insufficient Size of the Space Allocated
to Recordings they lead to the threat scenario Downtime or Malfunction of the Trace Production
Function. Up to this point, all information in the diagram were taken from the ISI specification,
either in the form of an explicit indicator (INC21, INC24) or derived from their description. Wher-
ever possible, SFRs from the Common Criteria catalogue were assigned as treatments to either
vulnerabilities or threat scenarios and therefore completing the created template diagrams.

Figure 21 Template Diagram based on Indicators and SFRs.

4.2.2 Exemplary Application to two DIAMONDS Case Studies
The applicability of the template library was examined in the scope of the two case studies by Giesecke &
Devrient and itrust. In order to avoid influencing the preparation of the template library and inadvertently
making it applicable only to the systems from the two case studies domains, the performed examination was
carried out after completion of the library.

Giesecke & Devrient (G&D)
The G&D case study was chosen because of the already available CORAS treatment diagrams. Table 3 to
Table 6 illustrate how vulnerabilities, threat scenarios and treatments from the G&D CORAS diagram can be
matched to the template library. This supports our argument that employing the library during risk analysis
will lead to a swifter yet similar risk assessment basis.

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 43 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Table 3 TD5. Security Critical User Behaviour

Template Library

The G&D threat scenario Lack of Firewall Security is simply a more general wording of VUL08 as taken
from the ISI group specification. While the training program suggested by G&D treats the vulnerability
Misconfigure Firewall, the information flow control policy required by FDP_IFC can aid in defining a global
firewall policy that is obligatory for every user.

G&D Case Study

Table 4 TD6. Usage of Insecure Protocols/Software

Template Library

The vulnerability and threat scenario by G&D comprises the more specific risk of a server that is reachable
externally via an unsecured protocol. One way to increase the security handling is to define a locally dis-
tinct communication path between the server an external entities as required by FTP_TRP.1.

G&D Case Study

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 44 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Table 5 TD7. Insufficient Password Policies/Practices and
Usurpation of Internal Rights or Identity

Template Library

The diagram Insufficient Password Policies/Practices contains VUL15 which leads to the existence of in-
secure passwords. VUL15 can be mapped to the G&D vulnerability Sloppy Handling with Admin Pass-
word. The treatment proposed by G&D Reduce Password Legal Period is a more abstract wording of the
SFR FMT_SAE.1 (Time-limited authorisation) which requires “the capability for an authorised user to
specify an expiration time on specified security attributes”.

The diagram Usurpation of Internal Rights or Identity includes a threat scenario mapped to INC30 which
describes the risk, that a hostile administrator abuses his privileges and accesses information that ex-
ceeds his scope of responsibilities. This can easily be mapped to the G&D threat scenario Misuse of ad-
ministrator authentication.

G&D Case Study

itrust
The itrust case study was chosen because it provided two Protection Profiles (PP) that follow the require-
ments of the Common Criteria standard. While neither PP has been certified at the time of writing, the ver-
sions used for our application examination were the final versions scheduled to be send to a certification
body for certification.

In the CC, the security problem definition – i.e. the assessment of threats – is axiomatic, meaning that the
determination of threat agents, adverse actions and assets falls outside of the scope of the CC. This is the
second promising application of the proposed template library: provide a well-defined risk analysis process

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 45 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

with automatic derivation of SFRs – a cornerstone of the security assessment as defined by the Common
Criteria.

The case study defines the following threats for the target of evaluation:

• T.CRYPTANALYSIS: Attack on the cryptographic algorithms and protocols
• T.INSECURE_INIT: Insecure initialisation of the TOE (see Figure 24)
• T.MALFUNCTION: Bad operation of TOE component (see Figure 23)
• T.MALWARE: Malicious software on the TOE (see Figure 22)
• T.MAN_MIDDLE: Man-in-the-middle between User Device and Localisation Assurance Provider
• T.UCM_ADMIN: Misuse of management
• T.UCM_DISCLOSE: Physical or Logical Disclosing All or Part of the User Communication Module

(see Figure 22)

Out of these seven threats, four were easily mapped to threat scenarios contained in the template library.
Figure 22 to Figure 24 illustrate this mapping.

Figure 22 External Intrusions and Attacks.

Figure 23 Malfunctions.

Figure 24 Security Critical User Behaviour.

Following the verification of the applicability of the threat scenarios defined in the template library, the sug-
gested treatments were examined. In order to check whether a risk analysis based on the template library
would have resulted in the selection of the same SFRs, the tracing from threats to security objectives to
SFRs as well as the respective rationales were examined. After thorough investigation, it was concluded that

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 46 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

all treatments from the library were also listed in the PPs and could be traced back to the same threats. Yet,
as several SFRs from the PPs were not covered by the template library, the point made earlier in this chap-
ter is emphasised again, namely, that the template library is not a completed risk analysis but merely a start-
ing point for an in-depth analysis of the system-specific risks.

4.3 COMPOSITION OF RISK ANALYSIS ARTEFACTS
The idea presented here to make the risk analysis for complex systems more feasible is to use the conven-
tional CORAS method only for the relatively small individual components the system consists of. Composing
the resulting artefacts of such analysis along with the combination of the components should allow to detect
and to evaluate the risks of the complex system. Combining components, their risks could be reduced; in-
creased or even new risks might arise.
In the scope of this chapter, a service for generating time-stamps is analysed in the scope of this chapter as
a compact example. It is a relatively small, but for many applications important and security critical compo-
nent. The conventional CORAS risk analysis process will not be presented in detail. Instead, just some re-
sults are given. The risk analysis artefacts shown here are exemplary excerpts – they are not meant to be
complete. Figure 25 shows a threat diagram for the exemplary time-stamp service that will be used as the
base for all further risk analysis throughout this chapter.

Figure 25 CORAS threat diagram.

In step four of the CORAS method the scales for expressing likelihoods, consequences and the functions to
calculate risk values are defined by those who do the risk analysis. This freedom makes it eventually difficult
to reuse results of the risk analysis for different components if they use different scales and risk functions.
Eventually, it might be necessary to define and apply proper conversion functions. In this example, absolute
likelihoods of threat scenarios and unwanted incidents to occur within a time period of ten years are noted
within square brackets as probability values according to the Kolmogorov axioms [9], i.e. as real numbers
between zero (will not happen) and one (will definitely happen). Relative likelihoods on relations are instead
noted as percentage values. For example if someone exploits “software errors”, Figure 25 indicates that
there is a relative likelihood of 32% that this is a denial of service attack and there is a relative likelihood of
75% that this attack manipulates the timer. Note that attackers can try to do both at the same time, so the
sum of these relative likelihoods may be above 100%.

4.3.1 Creating reusable threat interfaces for components
A threat interface describes how an individual component could be influenced by the unwanted incidents of
other components and how it could itself affect the security of other components or the entire system. It
should hide internal details. But it must be detailed enough to model and to evaluate the threats of a complex
system composed of multiple components.
A threat interface consists of a descriptive name of the component and three lists: The first list contains vul-
nerabilities that are exposed to other components. The second list contains the unwanted incidents that
might be a threat for other components or for the entire system. The third list contains directed relations,

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 47 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

each having a vulnerability from the first list as starting point and an unwanted incident from the second list
as end point.
The threat diagrams created in step five and six of the conventional CORAS method contain all the infor-
mation required to define a threat interface: These diagrams give a very detailed picture by distinguishing
between vulnerabilities, threat scenarios and unwanted incidents.
The vulnerabilities and the unwanted incidents from the threat diagram can directly be used within the threat
interface. The threat scenarios are somehow internal. They are hidden in the threat interface: Any relation
path in the threat diagram leading from a vulnerability to a threat scenario and further to an unwanted inci-
dent is replaced in the threat interface with a direct relation between the vulnerability and the unwanted inci-
dents. The relative likelihood values of the replaced relations are multiplied to get the relative likelihood for
each new direct relation.
Threat interfaces for components have a graphic representation as a box with vulnerabilities on the left hand
side and the unwanted incidents on the right hand side. Arrows with dashed lines represent the relations.
Relative likelihood values are written under the arrows. The threat interface for the time-stamp service is
shown in Figure 26.

Figure 26 Threat interface.

4.3.2 Threat composition diagram
In the example, it is more likely that the time-stamp service becomes unavailable, but the threat diagram
(Figure 25) shows that if the service generates a bad (i.e. wrong or weak) time-stamp, the consequences are
expected to be more serious. In step seven and eight of the conventional CORAS method, both unwanted
incidents are therefore evaluated as high risks and both should be treated.
One possible treatment to improve the availability of time-stamp generation is to use multiple time-stamp
services. If there are two alternative time-stamp services {A, B} and if it is enough that just one of them is
accessible, then the combined service A ˅ B would still be accessible even if one base service becomes
unavailable. A client application can immediately contact one of the two services {A, B}. Hence, the com-
bined service A ˅ B does not have to be implemented. It can be just a logical service. Instead of doing a
complete conventional CORAS risk analysis for the logical service A ˅ B, the idea is to make a threat com-
position with the threat interfaces for the base services. Therefore, the threat composition diagram is intro-
duced:
The threat composition diagram consists of two layers. The component layer contains information about how
the base components themselves are combined to a complex component. The second layer contains infor-
mation about the vulnerabilities and unwanted incidents identified for each individual component and about
how these could affect one another. That layer is called the directed graph of consequences.
In a threat composition diagram, each individual component is represented by its threat interface. The rela-
tions between the components are modelled on the component layer as relations between the entire threat
interfaces using arrows with dotted lines. If a simple arrow is not enough to make the relation understanda-
ble, description boxes may be used to informally explain relations. For the relations between the components
in the threat composition diagram in Figure 27 there is a description box on the side of the threat interface for
time-stamp service A ˅ B having the value “≥1”. This means that the new combined time-stamp service
A ˅ B relies on the output of at least one of its base services {A, B}.

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 48 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 27 Threat composition diagram with three components.

For each component, the threat interface is generated from a threat diagram produced in a conventional
CORAS risk analysis processes. If a component is composed of other base components, that analysis
should not go into the details of the base components. Instead, vulnerabilities corresponding to the unwanted
incidents of the base components are identified. Numeric values for the probability of unwanted incidents
which could be triggered by unwanted incidents of the base components do not have to be estimated in the
conventional CORAS analysis process. These values can be calculated using the directed graph of conse-
quences.
While the threat interfaces themselves become a part of the component layer in a threat composition dia-
gram, their vulnerabilities and unwanted incidents become nodes in the directed graph of consequences.
The internal relations of threat interfaces become edges in the directed graph of consequences. Additionally,
if an unwanted incident of some threat interface could affect a vulnerability of another threat interface, that
relation is modelled as another edge in the directed graph of consequences. In the threat composition dia-
grams, the graphic representation for such a trigger relation is an arrow having a continuous line.
Gates can be used to express complex trigger relations: For example, multiple unwanted incidents might be
required to actually affect a specific vulnerability. Graphically, a gate is represented by a small square with a
label representing its function. In the example (Figure 27), the combined time-stamp service A ˅ B becomes
only unavailable if service A and service B are unavailable. That is why the gate on the side of the “base
services unavailable” vulnerability has the label “=2”. But if just one of base service A or base service B pro-
duces a bad time-stamp, this will cause the combined service A ˅ B to produce a bad time-stamp, too.
Therefore, the gate on the side of the “bad base time stamp(s)” vulnerability has the label “≥1”.
The directed graph of consequences with its gates is similar to a fault tree and it will allow doing similar cal-
culations of probability values. The unwanted incidents correspond to faults in a fault tree. But in contrast to
a fault tree, the directed graph of consequences does not have to be a tree. It can have multiple top level
incidents, for example. With the vulnerabilities, the directed graph of consequences contains significantly
more information than a fault tree. Furthermore, it is always integrated in a threat composition diagram,
which contains information about the components and their combination.

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 49 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

In particular, vulnerabilities are important for identifying potential statistical dependencies not yet modelled in
a threat composition diagram. Knowing the statistical dependencies is essential to calculate probability val-
ues accurately.
If two unwanted incidents can be triggered by the same unwanted incident (i.e. they have a common trigger
unwanted incident in the directed graph of consequences) then they are definitely somehow statistically de-
pendent. In the threat composition diagram shown in Figure 27, there are no such obvious dependencies.
Unfortunately, if there is no common trigger in the threat composition diagram, this does not necessarily
mean that the unwanted incidents are statistically independent.
For statistical independency, there are no such simple criteria. Eventually, the threat composition diagram is
not fine grained enough and a more detailed analysis is required. Can there possibly be some common trig-
ger incidents that were not yet modelled? Looking at the incidents or faults without knowing further details
about the components, it is impossible to answer that question. Vulnerabilities are exactly the missing infor-
mation: they tell the analysts directly how a component could be affected. A careful look at the vulnerabilities
especially of the base components is crucial. In Figure 27 the two base services have vulnerabilities with
identical labels. That is a clear indicator that probably there could be some dependencies.
In that case, additional threat interfaces for more base components have to be added and their relations
must be modelled. Thereby, the threat composition diagram gets finer grained.

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 50 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 28 Threat composition diagram with additional base components.

For the time-stamp service base components A and B, there are several base components that will be taken
into consideration here: the server room, the operating system, the service program and a hash algorithm.
The threat composition diagram with the threat interfaces for these components is shown in Figure 28.
In the example, both base time-stamp services rely on the SHA-1 algorithm. If that algorithm is broken and
collisions can be found easily, both services will produce weak time-stamps. In the directed graph of conse-
quences the “generates bad time-stamp” incident of service A and the “generates bad time-stamp” incident
of service B have a common trigger node – they can both be triggered by the same unwanted incident “colli-
sions are found” of the “SHA-1” component. Clearly, they are statistically dependent. Note that in a fault tree,

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 51 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

it would be necessary to model two separate nodes having the same name for the two triggers. Else, it would
not be a tree. The directed graph of consequences can model dependencies more directly end intuitively.
The “generates bad time-stamp” incidents of the base services can also be triggered by other incidents obvi-
ously not having the same dependency. The probability values for unwanted incidents caused by triggers of
different dependencies must be kept separately to make a correct probability value calculation possible.
Therefore, an unwanted incident can have multiple different dependency sets, each representing only those
incidents caused by triggers that have the same dependency throughout the entire directed graph of conse-
quences. In the threat composition diagram, the dependency sets are represented as rows in the box repre-
senting the incident. Dependency sets should have a description indicating the cause of dependency if there
is any dependency. In the example, the description for the dependency set triggered by the “collisions are
found” incident is SHA.
Vulnerabilities can be affected by unwanted incidents having multiple different dependencies. In order to
support the correct calculation of probability values for the possible consequences, information about differ-
ent dependency sets of the “input” unwanted incidents must be preserved in vulnerabilities. Therefore, the
vulnerabilities in the threat composition diagram can have multiple rows representing different dependency
sets, too. Relations between an unwanted incident and a vulnerability (or vice versa) both having the same
dependency sets are modelled directly between the dependency sets. That way, probability values for differ-
ent dependency sets can be propagated through the directed graph of consequences without mixing them
up. In the example, the “bad base time-stamp(s)” vulnerability of time-stamp service A ˅ B preserves the
dependency sets of the incidents which can affect it.
For the dependency set named SHA, the kind of dependency is visible in the directed graph of consequenc-
es in the common trigger “collisions are found”. For the other dependency set, Figure 28 does not show any
common triggers. Does that mean that these parts of the “generates bad time-stamp” incidents of the two
base services are statistically independent? The “service unavailable” unwanted incidents of base time-
stamp service A and of base time-stamp service B do not have a common trigger, too. The graph shows no
dependency between them. Is the diagram fine grained enough to decide whether they are statistically inde-
pendent?
The only way to figure that out is to look carefully at the vulnerabilities. For all the vulnerabilities that could
eventually have a common trigger, a closer look at a finer grained threat composition diagram is required.
One of the vulnerabilities by which both unwanted incidents of time-stamp service A could be affected is
called “power supply server room α”. For time-stamp service B, there is a similar vulnerability called “power
supply server room β”. If both server rooms are connected to the same electricity network with the same
power plants, then these can definitely be affected by the same unwanted incidents. A closer look with more
fine grained components and risk interfaces is required to decide about statistical independency. Figure 29
shows a detailed threat composition diagram excerpt just for the two power supplies.
The two incidents X (EG1 fails to produce power) and Y (EG2 fails to produce power) are statistically de-
pendent. They are an example for mutual dependency, they can affect each other. If both electric generators
EG1 and EG2 work within normal parameters, each has to produce 10 KW. If one of these generators fails,
then the other generator has to produce up to 20 KW (the maximum capacity). A generator which has to
produce 20 KW needs more cooling. It becomes more likely that it will overheat. Though the cooling systems
themselves are independent – their vulnerabilities will not be affected by the same incident – the failure of
one generator increases the likelihood that the other generator will overheat.

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 52 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 29 Threat composition diagram for power supply.

As long as EG2 works, EG1 needs to produce only 10 KW and for air cooling i a cooling capacity of 8 KW is
sufficient. The probability P(X1) that EG1 will fail under such conditions is 0.24. The conditional probability
P(Y | X1) that EG2 will fail if EG1 has already failed is 0.2 because that is the probability that the cooling ca-
pacity of “water cooling ii” will drop below 18 KW. Once EG2 has to produce the entire 20 KW, it needs at
least that cooling capacity.
With the formula from equation 0, it is possible to calculate the probability that both electric generators will
fail if EG1 fails first: P(Y ∩ X1) = 0.048.
The probability P(X ∩ Y1) that both electric generators will fail if EG2 fails first can be calculated the same
way. P(Y1) is 0.16, P(X | Y1) is 0.6 and P(X ∩ Y1) = P(X | Y1) ∗ P(Y1) = 0.096.
Only if both generators fail at the same time, there will not be enough power for server room α. Each of the
two incidents X ∩ Y1 and Y ∩ X1 alone can trigger the “power shortfall for server room α” incident Sα. 0 indi-
cates that if X1 occurs, Y1 will not occur and vice versa. X1 and Y1 are mutually exclusive. Therefore, X ∩ Y1
and Y ∩ X1 are mutually exclusive, too, i.e. P((X ∩ Y1) ∩ (Y ∩ X1)) = 0. The probability P(Sα) that the power
supply for server room α fails can be calculated using the formula from equation 0: P(Sα) = 0.144.
This dependency affects transformer station Tα and server room α, but neither transformer station Tβ nor
server room β. The threat composition diagram in Figure 29 shows no dependencies between the two trans-
former stations Tα and Tβ. It is detailed enough to see that the base vulnerabilities do not have any common
trigger incidents with a relevant likelihood. The two “power shortfall” incidents are statistically independent.
The power supply for server room α is indeed completely separated from the power supply for server room β.
There are no statistical dependencies between the two power supplies that have to be taken into considera-
tion in order to calculate probability values correctly for the threat composition diagram given in Figure 28.
Once this top-down analysis is completed and the threat composition diagram is detailed enough to decide
about statistical independencies, a bottom-up analysis is required to propagate any identified new depend-
encies with the help of dependency sets throughout the entire directed graph of consequences. Having finer
grained components, analysts doing the bottom-up analysis will eventually identify some vulnerabilities and
incidents in higher level components that have been overlooked before. Eventually, further bouncing analysis

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 53 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

going multiple times top-down and bottom-up might be necessary to get a complete picture. Because the
directed graph of consequences can have multiple top level incidents, it is possible to do this bouncing anal-
ysis without changing the model. In a fault tree, this would not be possible.
For the time-stamp service example, in the scope of this chapter, details of the finer grained analysis for
other components than the power supplies are omitted. Instead, just the result is given: The fine grained
component analysis reveals no additional statistical dependencies between the unwanted incidents of the
two base time-stamp services.
Having a threat composition diagram with complete information about the dependencies and absolute prob-
ability values at least for all initial unwanted incidents, it becomes possible to calculate the missing probabil-
ity values. For each top level incident, this calculation works like in a fault tree.
Figure 28 shows, that the incident ABS (i.e. the combined time-stamp service A ˅ B becomes unavailable)
occurs only if both “service unavailable” incidents {AS, BS} of the two base services {A, B} occur, i.e.
P(ABS) = P(AS ∩ BS). The analysis shows that {AS, BS} are statistically independent. Hence, it is possible to
apply the formula from equation 0 and P(ABS) is simply)()(SS BA ΡΡ ∗ .
The incident AS can be triggered by unwanted incidents that affect the vulnerability physical server (AP) or by
unwanted incidents that affect the vulnerability software errors (AE). There is no statistical dependency be-
tween any incident affecting AP and any incident affecting AE. If AP is affected by some incident, this will trig-
ger in 90% of all cases AS. If AE is affected by some incident, this will trigger in 32% of all cases AS. There-
fore:

)(%)(%)(%)(%)(EPEPS AAAAA Ρ32Ρ90Ρ32Ρ90Ρ ∗∗∗−∗+∗=
Both P(AP) and P(AE) can be calculated using the formula from equation 0 and the absolute probability val-
ues of the incidents that affect them as parameters. The results are: P(AP)=0.4, P(AE)=0.21, P(AS)=0.4.
P(BS) can be calculated the same way and has a numeric value of 0.4, too. Finally, it is possible to calculate
P(ABS), which is 0.16.
The combined time-stamp service A ˅ B will produce bad time-stamps if at least one of the two base ser-
vices produces a bad time-stamp. For the unwanted incident ABG there are trigger incidents belonging to two
different dependency sets. ABG1 represents the vulnerability bad base time-stamp(s) being affected by statis-
tically independent incidents. ABG2 represents the vulnerability bad base time-stamp(s) being affected by
incidents depending on the SHA-1 collisions found incident. Any incident that could affect ABG1 is statistical
independent from any incident that could affect ABG2. To calculate P(ABG), it is possible to apply the formula
from equation 0 with P(ABG1) and P(ABG2) as parameters. Using the same formula several times and apply-
ing the relative likelihoods correctly, it is possible to calculate P(ABG1). P(ABG2) can be trivially calculated
using the formula from equation 0. The numeric values are: P(ABG1) = 0.39, P(ABG2) = 0.1, P(ABG) = 0.45.
The probability that a bad time stamp will be generated has been increased by taking one result of two dif-
ferent base services. To improve both, the availability and the correctness, it would probably be a good idea
to use three different base services and to require at least two of them to confirm the same time-stamp val-
ue.

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 54 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 30 Threat composition diagram with three base services.

In the example shown in Figure 30, given that all relevant statistical dependencies that are shown in the dia-
gram, it is possible to apply the formula from equation (1) to calculate P(ABCS) and P(ABCG1). The numeric

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 55 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

results are: P(ABCS) = 0.352 and P(ABCG) = 0.212. For the logical time-stamp service A ˄ (B ˅ C) ˅ (B ˄ C),
both the availability and the correctness are improved.

4.3.3 Composition with external threats and assets
Just looking at the threat interfaces of the components might eventually not be enough. External threats (es-
pecially human threats) identified for different components in separate threat diagrams could probably inter-
act with one another. There could be new combined threats, resulting in different dependencies of unwanted
incidents. Hence, the probability values can only be calculated correctly if the potential combinations of
threats are modelled and composed correctly.
In the example threat diagram for a single time-stamp service (Figure 25), there is a human threat “dishonest
provider”. A single time-stamp service will have a provider who is responsible for the operation of the time-
stamp service. The provider owns the server room and he has the key offering easy access to the physical
server his service runs on. A dishonest provider could use his privileged access to manipulate the service he
is responsible for.
If the time-stamp service is composed of multiple base time-stamp services, no single entity should provide
more than one of the base services. Consequently, no single entity would have easy access to more than
one of the servers used for a base time-stamp services (Figure 31). Manipulating just one base service
would then not be enough to manipulate the logical combined service A ˄ (B ˅ C) ˅ (B ˄ C). The easy ac-
cess to a single server of a base service becomes less critical.

Figure 31 Difficulties to physically access the server rooms for the different human threats.

However, this does not mean that having multiple services with different providers is automatically more
secure: Two providers could agree to cooperate with one another to cheat successfully. For those who col-
laborate, it does not matter that each of them only has the key (and therefore easy access) to exactly one
single server room: Two or more allied providers working together do have at least two keys and therefore
easy access to at least two different server rooms. Doing manipulations in two different server rooms is
enough to manipulate the combined service successfully.
In the threat composition diagram, potentially manipulative coalitions can be represented by threat interfaces
as shown in Figure 32. Each manipulative collaboration incident of these interfaces can trigger direct hard-
ware misuse incidents in two or more different server rooms. Incidents triggered by the same initial manipu-
lative collaboration incident are statistically dependent. The different dependencies have to be modelled as
separate dependency sets. In the example, each direct hardware misuse incident has four different depend-

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 56 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

ency sets. These different dependencies have to be propagated forward through the directed graph of con-
sequences as shown in Figure 33.

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 57 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 32.. Threat composition diagram with coalitions (excerpt 1).

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 58 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 33 Threat composition diagram with coalitions (excerpt 2, containing only the service unavail-

able top level incident, with probability value results).

In general, all threats identified in the threat diagram for any individual involved component have to be added
to the threat composition diagram. Each threat should appear only once. For each relation from a threat K’ to
some vulnerability M’ in the threat diagram of an individual component it is necessary to make sure that there
is a relation between the corresponding threat K and the vulnerability M in the threat composition diagram,
too. Eventually, it is not necessary to insert a direct relation: If there is a relation leading from the threat K to

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 59 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

another vulnerability N, and if there is a path between N and M in the directed graph of consequences having
a relative likelihood of 100%, then this indirect relation is sufficient.
For the actual composition analysis process of external threats (e.g. the process of finding potentially harmful
coalitions of human threats), there is no simple algorithm. Those threats that can affect some of the involved
components, but not all of them (at least not in the same way) are candidates for composition analysis. If
there can be any interaction between these threats which could affect the new composed system, these
interactions and the resulting dependencies must be modelled in the threat composition diagram.
The threat composition diagram is not yet complete until the consequences of unwanted incidents for the
assets are taken into consideration, too. All consequences and assets identified in the threat diagrams for
individual components have to be included in the threat composition diagram. Let T’ be an asset identified in
the threat diagram for the component D’. If there is not yet an asset T corresponding to T’ in the threat com-
position diagram, then T must be added.
For each unwanted incident E’ identified for component D’ that has the consequence Q’ for T’, it is necessary
to make sure that this consequence is also modelled correctly as a consequence relation Q between E (i.e.
the incident corresponding to E’ in the threat interface for D’) and T in the threat composition diagram. The
consequence value of Q’ is assigned to Q.
Threats and their influence relations are added to the threat composition diagram to support the analysis of
dependencies and to enable the correct calculation of probability values. Consequences and assets are ba-
sically added to the threat composition diagram because these are required for the further steps in the risk
analysis process.

4.4 DERIVING AND COMPARING RISKS
For identifying and evaluating risks, it would be possible to define another composition process. But there is
no need to do the composition twice. The differentiation between vulnerabilities and unwanted incidents is
probably more helpful for the composition than just having risks. For that reason, composition should be
done only at threat analysis level.
A threat composition diagram with assets and consequence estimations can be used as the base to immedi-
ately identify and evaluate the risks without further need for component based composition. Hence, it is pos-
sible to create a conventional CORAS risk diagram for the entire system – without worrying about individual
components anymore.
Just like in a conventional threat diagram, in a threat composition diagram each consequence relation Q
leading from an unwanted incident E to an asset T is a risk R. The probability value of that unwanted incident
E and the consequence value of Q are the parameters for the risk function, which is used to calculate the
risk value for R. The risk value is necessary for applying the risk evaluation criteria. Risk functions, risk val-
ues and evaluation criteria are defined by the risk analysts in step 4 of the conventional CORAS method.

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 60 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 34 Threat composition diagram for a single time-stamp service with assets and consequenc-

es.

Typically, risks should be identified at a certain level of abstraction. For example, in the threat composition
diagram shown in Figure 34, it would be possible to identify the risks at the high level of time-stamp compo-
nent A or it would be possible to identify them at the low level of the base components. Only the unwanted
incidents of the risk interfaces representing the components at the chosen level of abstraction are translated
to risks for all possible consequences.
A consequence relation of some unwanted incident E can be indirect: If there is a path in the directed graph
of consequences leading from E to some unwanted incident W having the consequence Q for asset T, then
incident E can have the consequence Q for T, too. Hence, a risk can be identified for (E, W, Q, T) and the
risk value can be calculated using the product of the absolute probability value for E and the relative likeli-
hood for the path between E and W (i.e.)()(EWE ΡΡ ∗) as the first parameter and the consequence value of
Q as the second parameter for the risk function.
For example, the unwanted incident “executes malicious code” of the “service program a” component in the
example threat composition diagram shown in Figure 34 does not have direct consequences for any identi-
fied asset. But there are paths in the directed graph of consequences indicating that the incident can indirect-
ly affect assets: There is one moderate consequence that the “executes malicious code” incident will have if
it triggers the “service unavailable” incident and there are two consequences (one major, the other cata-
strophic) that it will have if it triggers the “generates bad time-stamp” incident.
Each of these indirect consequence relations leading from an incident to an asset is identified as an individ-
ual risk.

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 61 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Table 6 Risk Function for Base Incidents

 Consequences
 Minor moderate major catastrophic

Li
ke

lih
oo

d < 0.03 very low very low low medium

[0.03-0.06[very low low medium high

[0.06-0.16[Low medium high very high

≥ 0.16 Medium high very high very high

A common risk function defined for all base components in step 4 of the conventional CORAS risk analysis
process is given in Table 6. While the consequence value for a risk can just be read from the graph, the like-
lihood value for a risk has to be calculated along the path in the directed graph of consequences. The proba-
bility that the “executes malicious code” incident of component “service program a” occurs is 0.11, but only
32% of these incidents lead to the “service unavailable” incident. Therefore the probability for the risk “ser-
vice program a executes malicious code” (“service unavailable”) is 0.0352. Having a “moderate” conse-
quence, this is a “low” risk.
Identifying and determining the risks in that way, it is possible to construct a flat conventional CORAS risk
diagram using a threat composition diagram as input. It probably makes sense to summarize all the risks
derived from the same unwanted incident in a compact structure as shown in Figure 35.

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 62 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 35 Risk diagram for a single time-stamp service.

If only the unwanted incidents of risk interfaces for higher level components should be analysed for identify-
ing risks, caution is required if some base component incidents have consequences for assets that have not
been identified for the higher level components. In the example shown in Figure 34, there are no conse-
quences from the unwanted incidents of the “time-stamp service A” component for the “hardware infrastruc-
ture” asset. But these unwanted incidents can be triggered by the “direct hardware misuse” incident or by the
“operating conditions violated” incident of the risk interface for the “server room α“ component, which both
have consequences for the “hardware infrastructure” asset. If these consequences and assets do not matter

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 63 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

in the higher level context they may be ignored. Otherwise, the risk analysis for the higher level components
was probably not complete and must therefore be repeated taking more assets into consideration.

4.4.1 Comparing the risks of components and architectures
Though it is possible to get completely rid of all the component and composition information when deriving
risks from a threat composition diagram, it might also offer some benefits to create a diagram that keeps
some information about the components. The idea is to make components or complex combinations of com-
ponents comparable in terms of risks. Identifying the most critical components allows focusing treatment
efforts. Typically, for a complex system, there is not only one single possible configuration. The system could
probably be build using another combination of components or using completely other base components,
too. It should be possible to choose the architecture with the fewest risks. Therefore, the risk comparison
diagram is introduced here.

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 64 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 36 Risk comparison diagram.

In a risk comparison diagram, each component is modelled as a risk table. Each risk table has a row for the
component name and rows for all the risk values that have been defined during the risk analysis for that
component. Relations between the components can be modelled between the risk tables with arrows having
dashed lines and description boxes. A risk comparison diagram contains the risks and assets that can be
identified for all involved components. In contrast to a risk diagram, the risk value is not written down for
each risk. Instead, the consequence relations from risk R to asset T are made through the risk table repre-
senting the component the risk was identified for. More precisely, the relations have to pass through the row
representing the risk value of the risk R. That way, all risks of a component and their values are summarized
in a risk table at a glance. Figure 36 shows a risk comparison diagram for three alternative time-stamp ser-
vice designs.

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 65 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

For a complex system, there are many difficult design decisions, e.g. which technologies and implementa-
tions should be used for the individual components to minimize the total risks. Risk comparison diagrams
have proven to be a valuable tool for making such decisions for the S-Network and they are helpful to com-
municate such decisions graphically.

4.5 CONCLUSION, RELATED AND FURTHER WORK
Chapter 4 presents a homogeneous approach for risk-driven security testing which introduces multiple ad-
vantages for the risk analysis process. With the extension presented in Chapters 4.3 and 4.4, the CORAS
method becomes practicable for the risk analysis of large scale systems consisting of many different compo-
nents. Modelling the relations between risk analyses artefacts generated for individual components, the
probability values of unwanted incidents for the complex system can be calculated. In addition, an approach
to make the risk analysis process more efficient as a whole is presented in Chapter 4.2. In combination, the
template library and composition diagrams allow for a well-structured, efficient risk analysis process that is
well suited for large systems normally deemed too complex for risk analysis.
The template library described in this deliverable will deploy its full potential when being integrated with the
Test Pattern catalogue described in D3.WP4.T1. Both catalogues can be linked together through the use of
SFRs and therefore offer a predefined tracing from the risk analysis phase to the test phase and back. In
order to preserve the predefined tracing between the CORAS template library and the test pattern catalogue,
a model transformation as shown in Figure 37 will be implemented. The relevant risk paths from the template
library can then be selected and transformed into a new, standalone CORAS risk model, while the tracing
between treatments and test pattern is preserved.

Figure 37 Tracing Preservation.

The directed graph of consequences in threat composition diagrams is similar to fault trees. It contains
gates, which can express relations that conventional CORAS diagrams cannot model. But in contrast to a
fault tree, the directed graph of consequences does not have to be a tree: there can be multiple top level
incidents. A single directed graph of consequences can represent multiple fault trees. Nodes in the directed
graph of consequences modelling incidents can have relations leading to more than a single consequence
incident. Therefore, dependencies can be modelled directly as common trigger nodes. In a fault tree, a fault
triggering n other faults must be represented by n nodes having the same name but no graphical connection
– which is less intuitive. Even more important, using the directed graph of consequences, bouncing analysis
becomes feasible, going top-down and bottom-up with the same model. Using FTA, bouncing analysis is
only possible in combination with other risk analysis methods like FMCA, which work on other models than
fault trees. Transitions between different methods can cause problems and might be too difficult.
Containing the vulnerabilities, the external threats, the consequences and the assets, the directed graph of
consequences offers the analyst more useful information than a fault tree. As a part of the threat composition
diagram, the directed graph of consequences is always integrated in a model for the combination and inter-
action of the components themselves – represented by their threat interfaces. Having such a complete pic-
ture can help the analyst to identify all relevant risks. However, diagrams can also get large and complex.
High level CORAS is suggested to hide details in conventional CORAS diagrams [10]. A similar approach
could be used for hiding parts in the new diagram types suggested here. A Software tool like the CORAS

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 66 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

tool for the conventional CORAS method (http://coras.sourceforge.net/coras_tool.html) can help the analysts
to deal with complex diagrams. Despite modelling and visualizing, a software tool could also support the
computation of probability values in the directed graph of consequences.
Conventional risk diagrams can be created directly from the threat composition diagram. The least risky
components and designs can be chosen using the risk comparison diagram.
Further research could try to add some information about the life cycle of unwanted incidents to the extended
CORAS method. For how long does an unwanted incident last? Is the unwanted incident detected? Will the
unwanted incident be repaired within a certain time-period once it was detected? Such information is essen-
tial to calculate more precise probability values. Established in other analysis methods like dynamic FTA,
these aspects should be captured by CORAS, too.

5. REFERENCES

[1] Zigmund Bluvband, Rafi Polak, Pavel Grabov: Bouncing Failure Analysis (BFA): The Unified FTA-
FMEA Methodology, ALD Reliability Engineering, Tel-Aviv 2005, http://www.aldservice.com/en/ arti-
cles/bouncing-failure-analysis-bfa-the-unified-fta-fmea-method.html (2012-04-15)
[2] Gyrd Brændeland, Heidi E. I. Dahl, Iselin Engan, Ketil Stølen: Using dependent CORAs diagams to
analyse mutual dependency, Lecture Notes in Computer Science 5141, Second International Workshop
on Critial Information Infrastructures Security (CRITIS'07) pp. 135-148, Springer 2008
[3] Heidi E. I. Dahl, Ida Hogganvik, Ketil Stølen: Structured semantics for the CORAS security risk mod-
elling language, 2nd International Workshop on Interoperability solutions on Trust, Security, Policies and
QoS for Enhanced Enterprise Systems (IS-TSPQ'07). Report B-2007-3 pp. 72-92, University of Helsinki
2007
[4] Department of Defense: Procedings for Performing a Failure Mode, Effects and Criticality Analysis,
MIL-STD-1629, Washington 1949/1980, http://www.fmea-fmeca.com/milstd1629.pdf (2012-04-15)
[5] Joanne Bechta Dugan, Kevin J. Sullivan, David Coppit: Developing a low-cost high-quality software
tool for dynamic fault-tree analysis, IEEE Transactions on Reliability 2000-03 pp. 49-59, IEEE Computer
Society 2000, ISSN: 0018-9529, Digital Object Identifier: 10.1109/24.855536
[6] Clifton A. Ericson II: Fault Tree Analysis - A History, in Proceedings of the 17th International System
Safety Conference, System Safety Society, Unionville 1999, http://www.fault-tree.net/papers/ericson-fta-
history.pdf (2012-04-15)
[7] Rohit Gulati, Joanne Bechta Dugan: A Modular Approach for Analyzing Static and Dynamic Fault
Trees, Proceedings of the 1997 Reliability and Maintainability Symposium in Philadelphia, PA pp. 57-63,
IEEE Computer Society 1997, Print ISBN: 0-7803-3783-2
[8] Ida Hogganvik, Ketil Stølen: A Graphical Approach to Risk Identification, Motivated by Empirical In-
vestigations, 9th International Conference on Model Driven Engineering Languages and Systems (MoD-
ELS 2006), Lecture Notes in Computer Science 4199 pp. 574-588, Springer Berlin Heidelberg 2006, DOI:
10.1007/11880240_40
[9] Andrei Kolmogorov: Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer Verlag Berlin 1933,
[10] Mass Soldal Lund, Bjørnar Solhaug, Ketil Stølen: Model-Driven Risk Analysis, The CORAS Ap-
proach, Springer Verlag Berlin Heidelberg 2011, ISBN: 978-3-642-12322-1
[11] Antoine Rauzy: New algorithms for fault trees analysis, Reliability Engineering and System Safety 40
(1993) pp. 203-211, Elsevier Science Publishers 1993
[12] Michael Stamatelatos, Joanne Dugan, Joseph Fragola, Joseph Minarick, Jan Railsback: Fault Tree
Handbook with Aerospace Applications, NASA, Washington 2002,
http://www.hq.nasa.gov/office/codeq/doctree/fthb.pdf (2012-04-15)
[13] W. E. Vesely, F. F. Goldberg, N. H. Roberts, D. F. Haasl: Fault Tree Handbook, U.S. Nuclear Regu-
latory Commission, Washington 1981, http://www.nrc.gov/reading-rm/doc-
collections/nuregs/staff/sr0492/sr0492.pdf (2012-04-15)
[14] H. A. Watson: Launch Control Safety Study, Section VII, Vol 1, Bell Laboratories, Murray Hill 1961
[15] H. Götz, M. Nickolaus, T. Roßner, K. Salomon, “Model Based Testing - Modelling and generation of
tests - basics, criteria for tool use, tools in the overview” (in German), iX Studie, 01/2009
[16] Jürjens, J.: Secure Systems Development with UML, Springer, 2005

Review of security testing tools

Deliverable ID: D4_3_T2_T3

Page : 67 of 67

Version: 1.1
Date : 02.07.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

[17] Jürjens, J.; Schreck, J. & Yu, Y.: Automated Analysis of Permission-Based Security Using UMLsec;
Fundamental Approaches to Software Engineering, 11th International Conference (FASE), Springer,
2008, 4961, 292-295
[18] Jürjens, J. Jézéquel, J.-M.; Hussmann, H. & Cook, S. (Eds.) UMLsec: Extending UML for Secure
Systems Development; The Unified Modeling Language, Springer Berlin / Heidelberg, 2002, 2460, 1-9
[19] Lodderstedt, T.; Basin, D. A. & Doser, J. Jézéquel, J.-M.; Hußmann, H. & Cook, S. (Eds.) Se-
cureUML: A UML-Based Modeling Language for Model-Driven Security; The Unified Modeling Language,
5th International Conference, Springer, 2002, 2460, 426-441
[20] Information Security Indicators (ISI), Part 1: A full set of operational indicators for organizations
to use to benchmark their security posture, Version 0.0.2, February 2012.
[21] Common Criteria for Information Technology Security Evaluation, Version 3.1R3, July 2009
[22] Common Methodology for Information Technology Security Evaluation, Version 3.1R3, July 2009
[23] [1] Information security-wikipedia. http://en.wikipedia.org/wiki/Information_security, last date ac-
cessed 17.09.2011.
[24] [2] Model based testing-wikipedia. http://en.wikipedia.org/wiki/Model-based_testing, last date ac-
cessed 17.09.2011.
[25] [3] P. Bourque and R. Dupuis. Guide to the software engineering body of knowledge 2004 version.
Technical report 19759, IEEE Computer Society, 2004.
[26] [4] William S. Chao. System Analysis and Design: SBC Software Architecture in Practice. Lambert
Academic Publishing, 2009.
[27] [5] The Committee on National Security Systems. National Information Assurance (IA) Glossary,
CNSS Instruction No. 4009, 2010.
[28] [6] IEEE Computer Society. IEEE 829 - Standard for Software and System Test Documentation,
2008.
[29] [7] International Standards Organization. ISO 27000:2009(E), Information technology - Security
techniques - Information security management systems - Overview and vocabulary, 2009.
[30] [8] International Standards Organization. ISO 31000:2009(E), Risk management – Principles and
guidelines, 2009.
[31] [9] International Standards Organization. ISO 29119 Software and system engineering - Software
Testing-Part 2 : Test process (draft), 2012.
[32] [11] The Open Group. The Open Group Architecture Framework Version 9.1, 2011.
[33] [12] Testing Standards Working Party. BS 7925-1 Vocabulary of terms in software testing. 1998.
[34] [13] F. John Reh. www.about.com.
http://management.about.com/cs/generalmanagement/g/objective.htm, last date accessed 19.04.2012.

