
© DIAMONDS Consortium 2010-2013

Development and Industrial Application of Multi-Domain
Security Testing Technologies

Innovation Sheet

Static Binary Code Analysis for Vulnerability Detection

© DIAMONDS Consortium 2010-2013

1.  Vulnerable Sink Identification:
•  By performing an intraprocedural dataflow analysis, the

technique identifies vulnerable functions (e.g. buffer
overflow prone functions).

2.  Vulnerable Execution Path Identification (Program
slicing):

•  Given a pair of taint input function (Tsrc) and vulnerable
function (Tdst), calculate a callgraph based slice rooted
at common function (CR).

•  Intraprocedural and interprocedural dataflow on the
control flow graph of each function (fis and gis) to
calculate data dependencies.

•  Output: statically computes a path such that taint input
can flow to vulnerable functions.

Static Binary Code Analysis
Description

The technique statically analyzes the binary executable code of application
to detect low-level vulnerabilities. The main features are:

© DIAMONDS Consortium 2010-2013

§  Vulnerable functions identification:
§  Focusing on known vulnerable library functions is the most common way to detecting

vulnerabilities.
§  D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken, “A first step towards automated detection of buffer

overrun vulnerabilities,” in Proc. of the symp. NDSS 02. The Internet Society, 2000, pp. 3–17.
§  J. Newsome and D. X. Song, “Dynamic taint analysis for automatic detection, analysis, and signature

generation of exploits on commodity software,” in Proc. of NDSS 2005, San Diego, California, USA. The
Internet Society, 2005.

•  Another way is to calculate differences between patched and un-patched versions of
a given application OR full function coverage.

•  D. Brumley, P. Poosankam, D. Song, and J. Zheng, “Automatic patchbased exploit generation is
possible: Techniques and implications,” in Proc. of the 2008 IEEE Symposium S&P. Washington, DC,
USA: IEEE, 2008, pp. 143–157.

•  P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated whitebox fuzz testing,” in NDSS, 2008.

Static Binary Code Analysis
State of the art

© DIAMONDS Consortium 2010-2013

§  Static Vulnerable Path Identification:
•  Not many tools/techniques to perform binary static taint analysis on real-world

applications. Parfait (Scholz et al) tool operates at the C source level and work by
Tripp et al performs the similar analysis, but on the source code.

•  Scholz, B., Zhang, C., Cifuentes, C.: User-input dependence analysis via graph reachability. In: IEEE
Int. Workshop SCAM ’08, Los Alamitos, CA, USA (2008)25–34

•  Tripp, O., Pistoia, M., Cousot, P., Cousot, R., Guarnieri, S.: Andromeda: accurate and scalable security
analysis of web applications. In: Proc. of the 16th international conference FASE. FASE’13, Berlin,
Springer-Verlag (2013) 210–225

•  Reps et al. proposed an algorithm for “precise interprocedural program chopping”,
but this algorithm relies on specific intermediate program representations (PDG and
SDG), which is very expensive. LoongChecker tool is very close to our work, but it
performs an interprocedural data-dependence analysis with a VSA (Value-Set
Analysis) on all functions, which is again expensive.

•  Reps, T., Rosay, G.: Precise interprocedural chopping. In: Proceedings of the 3rd ACM symposium FSE.
SIGSOFT ’95, NY, USA, ACM (1995) 41–52

•  Cheng, S., Yang, J., Wang, J., Wang, J., Jiang, F.: Loongchecker: Practical summary-based semi-
simulation to detect vulnerability in binary code. In: Proc. 10th Int. Conf. on TrustCom, IEEE (2011)
150–159

Static Binary Code Analysis
State of the art

© DIAMONDS Consortium 2010-2013

§  Identifying GENERIC vulnerable functions
§  Directly applicable on BINARY code

In general, most of the approaches on vulnerability analysis rely on well known vulnerable
functions for the analysis. The idea of vulnerable functions (buffer overflow vulnerability) is
formalized and an efficient algorithm is presented to detect such functions in the large binary
code. The algorithm is implemented in a tool which is released as open source.

[Deliverable D3.WP2, Section 2.2.3]

§  Pure static analysis of taint flow.
§  Directly on BINARY code

Performing a taint analysis has largely been targeted as dynamic approach. We present a pure
static approach for performing taintflow analysis. There are very few proposals in the literature
that perform static taint analysis and this number goes way down when we consider binary code
analysis. The existing approaches on binary taint analysis are very complex and not scalable. We
propose technique to perform static taintflow analysis which is scalable and able to analyze real
world applications. The whole approach is implemented in a tool and tested on several
applications.

[Deliverable D5.WP2, Section C-IV]

Static Binary Code Analysis
Advances beyond the state of the art

© DIAMONDS Consortium 2010-2013

§  The proposed work have been presented in international conferences and various
technical meetings/discussions/seminars.

§  The approach has been applied to Metso case study.

§  The approach has been implemented as a tool to make it available for larger usage.

Static Binary Code Analysis
Exploitation and application to case studies

