

Title: DIAMONDS Security Testing Methodology

Version: 1.0
Date : 16.05.2013
Pages : 39

Editor: Fredrik Seehusen

Reviewers: Bruno Legeard, Peter Schmitting

To: DIAMONDS Consortium

The DIAMONDS Consortium consists of:

Codenomicon,	
 Conformiq,	
 Dornier	
 Consulting,	
 Ericsson,	
 Fraunhofer	
 FOKUS,	
 FSCOM,	
 Gemalto,	
 Get	
 IT,	

Giesecke	
 &	
 Devrient,	
 Grenoble	
 INP,	
 itrust,	
 Metso,	
 Montimage,	
 Accurate	
 Equity,	
 SINTEF,	
 Smartesting,	

Secure	
 Business	
 Applications,	
 Testing	
 Technologies,	
 Thales,	
 TU	
 Graz,	
 University	
 Oulu,	
 VTT	

Status: Confidentiality:

[
[
[
[X

]
]
]
]

 Draft
 To be reviewed
 Proposal
 Final / Released

[
[
[

X

]
]
]

 Public
 Restricted
 Confidential

 Intended for public use
 Intended for DIAMONDS consortium only
 Intended for individual partner only

Deliverable ID: D5_4_T1-T3

Title:

DIAMONDS Security Testing Methodology

Contributors: Fredrik Seehusen, Johannes Viehmann, Stephane Maag, Jürgen Großmann

 Copyright DIAMONDS Consortium

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 2 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

TABLE OF CONTENTS
1. Overview of related processes and standards ... 6	

1.1	
 Testing .. 6	

1.2	
 Security Testing .. 8	

1.3	
 Model-based testing .. 9	

1.4	
 Risk Assessment .. 10	

2. A generic methodology for model-based security testing .. 12	

2.1	
 A generic process for model-based security testing ... 12	

2.2	
 Relating DIAMONDS techniques to the methodology .. 14	

3. A specific methodology for model-based security testing ... 16	

3.1	
 Overview: combined TMSR and RMST .. 16	

3.2	
 From risk analysis artefacts to test patterns ... 17	

3.2.1	
 Selecting elements to test ... 17	

3.2.2	
 Map security test patterns to threat scenarios .. 18	

3.3	
 From test patterns to Test implementation and execution .. 18	

3.4	
 Complete the Iteration with TMSR .. 19	

4. A specific methodology for test-based risk assessment .. 20	

4.1	
 Overview of process and instantiation .. 20	

4.1.1	
 Overview of process ... 20	

4.1.2	
 Instantiation .. 21	

4.2	
 Description of the process .. 22	

4.2.1	
 1: Establish context and target of analysis. .. 22	

4.2.2	
 2: Risk identification .. 24	

4.2.3	
 3: Risk estimation ... 25	

4.2.4	
 4: Risk evaluation ... 26	

4.2.5	
 5.a: Test identification ... 26	

4.2.6	
 5.b: Test selection/prioritization .. 27	

4.2.7	
 6: Test design, implementation, and execution .. 29	

4.2.8	
 7: Risk validation and treatment ... 30	

5. A Catalogue of Security Test Patterns .. 33	

5.1	
 Overview on the DIAMONDS Security test patterns ... 33	

5.2	
 Security Test Pattern Application in the Case Studies .. 35	

5.2.1	
 Banking case study: Giesecke & Devrient (FOKUS) .. 35	

5.2.2	
 Automotive case study: Dornier Consulting (IT) ... 36	

5.2.3	
 Smart cards case study: Gemalto (INPG) .. 37	

6. Conclusion ... 38	

7. References ... 39	

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 3 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

 FIGURES

Figure 1 Activities of a three layered test process [8] .. 6	

Figure 2 A generic testing process .. 7	

Figure 3 Four-stage penetration testing methodology .. 9	

Figure 4 A generic model-based testing process .. 9	

Figure 5 A generic risk management process ... 10	

Figure 6 The generic process for model-based security testing and its relation to the testing process 13	

Figure 7 Relating DIAMONDS techniques to the generic process .. 15	

Figure 8 Model-based security testing process ... 17	

Figure 9: Mapping threat diagram artefacts to test pattern ... 19	

Figure 10 A specific test-based risk assessment process ... 20	

Figure 11 Relation the specific test-based risk assessment process to the generic process 22	

Figure 12 Example of a CORAS asset diagram .. 23	

Figure 13 Example of a CORAS threat diagram ... 25	

Figure 14 Example of a CORAS threat diagram with likelihood values .. 26	

Figure 15 Example of a CORAS threat diagram with annotations for testability and uncertainty 28	

Figure 16 Example of an updated risk model based on test results ... 31	

Figure 17 Example of a CORAS treatment diagram ... 32	

Figure 18: Application of test pattern to risk assessment artefacts ... 36	

 TABLES

Table 1 Example of a likelihood scale ... 23	

Table 2 Example of a consequence scale for asset Availability of service ... 23	

Table 3 Example of a consequence scale for asset Confidentiality of user data .. 24	

Table 4 Example of risk evaluation criteria .. 24	

Table 5 Example of a risk evaluation matrix with risks .. 26	

Table 6 Example of identified test scenarios ... 27	

Table 7 Example of a prioritized list of test scenarios ... 29	

Table 8 Example of test result report .. 30	

Table 9 Example of an updated risk evaluation matrix ... 31	

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 4 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

HISTORY
Vers. Date Author Description
0.1 05/03/13 Fredrik

Seehusen
Template created

0.2 05/04/13 Stephan Maag Draft input on test pattern catalogue provided
0.3 12/04/13 Fredrik

Seehusen
Draft input on process overivew, generic process description, and
test-based risk assessment process provided.

0.4 15/04/13 Jürgen
Großmann

Input on test pattern cataloque

0.5 29/04/13 Fredrik
Seehusen

Process overview, generic process description, and a process for
test-based risk assessment ready for internal review.

0.9 07/05/13 Johannes
Viehmann

Input on a specific methodology for model-based security testing

1.0 16/05/13 Fredrik
Seehusen

Finalized document based on feedback from reviewers

APPLICABLE DOCUMENT LIST
Ref. Title, author, source, date, status DIAMONDS ID

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 5 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

EXECUTIVE SUMMARY

This document constitutes the third and final deliverable of work package 4, documenting results of task T4.1
(security patterns) and tasks 4.2 and task 4.3 on risk- and model-based security testing methodologies.
While the other work packages of the DIAMONDS project describe techniques/methods and tools, work
package 4 describes processes/guidelines for applying these tool and techniques in practice.

The main objectives of the deliverable is to document a generic process for model-based security testing,
provide examples of a concrete instances of the process, and to provide an overview of the security test
patterns that have been identified in the DIAMONDS project.

The deliverable is structured as follows. First, in Section 1, we give an overview of existing processes within
the main areas addressed by the DIAMONDS project (testing, security testing, model-based testing, and risk
assessment). Then in, Section 2, we present a generic process for model-based security testing which com-
bines the processes presented in Section 1, and give an overview of how the DIAMONDS techniques relate
to the activities of the process. In Section 3 and Section 4, we present concrete instances/refinements of the
generic process, focusing on model-based security testing and test-based security risk assessment, respec-
tively. Finally, in Section 5, we provide an overview of the security test patterns that have been identified in
the DIAMONDS project, and describe their application in the DIAMONDS case studies.

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 6 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

1. OVERVIEW OF RELATED PROCESSES AND STANDARDS
In this section we describe processes and standards that we have used as a basis for defining the generic
DIAMONDS process for model-based security testing (described in Section 2). For each of the main areas
addressed by DIMAONDS (testing, security testing, model-based testing, and risk assessment), we define a
process which is representative for that area. In Section 2, we combine all these processes into what we call
the generic DIAMONDS process for model-based security testing.

1.1 TESTING
In this section, we define a generic process for testing based in the upcoming standard ISO/IEC 29119 Soft-
ware Testing [8]. According to [8], the testing activities that are performed during the life cycle of a software
system may be grouped into a three layered test process, as shown in Figure 1.

Figure 1 Activities of a three layered test process [8]

The aim of the organizational test process layer is to define a process for the creation and maintenance of
organizational test specifications, such as organizational test policies, strategies, processes, procedures and
other assets [8].

The aim of the test management process layer is to define processes that cover the management of testing
for a whole test project or any test phase or test type within a test project (e.g. project test management,
system test management, performance test management) [8].

The aim of the dynamic test process layer is to define generic processes for performing dynamic testing.
Dynamic testing may be performed at a particular phase of testing (e.g. unit, integration, system, and ac-
ceptance) or for a particular type of testing (e.g. performance testing, security testing, and functional testing)
within a test project [8].

What we refer to as the testing process in the DIAMONDS project is basically what Figure 1 refers to as the
dynamic test process. However, as indicated by Figure 2 we also add a test planning step capturing the test
planning of the test management process of relevance for one run of the dynamic test process.

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 7 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 2 A generic testing process

Below, we define the activities of the generic testing process in more detail.

Test Planning
The test planning is the process of developing the test plan. Depending on where in the project this process
is implemented this may be a project test plan or a test plan for a specific phase, such as a system test plan,
or a test plan for a specific type of testing, such as a performance test plan (adapted from [8]).

Test Design and Implementation
The test design and implementation is the process of deriving the test cases and test procedures (adapted
from [8]).

Test Environment Set-up and Maintenance
The test environment set-up and maintenance process is the process of establishing and maintaining the
environment in which tests are executed (adapted from [8]).

Test Execution
The test execution is the process of running the test procedure resulting from the test design and implemen-
tation process on the test environment established by the test environment set-up and maintenance process.
The test execution process may need to be performed a number of times as all the available test procedures
may not be executed in a single iteration (adapted from [8]).

Test Incident Reporting

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 8 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

The test incident reporting is the process of managing the test incidents. This process will be entered as a
result of the identification of test failures, instances where something unusual or unexpected occurred during
test execution, or when a retest passes (adapted from [8]).

1.2 SECURITY TESTING
In this section, we define a generic process for security testing based in the Technical Guide to Information
Security Testing and Assessment from the National Institute of Standards and Technology (NIST) [14]. The
NIST guide distinguishes between three typical phases of a security assessment and testing process. The
phases are (Test-) Planning, (Test-) Execution and Post (Test-) Execution.

Planning
The Planning phase is used to gather all relevant information that is used during a security assessment. The
main tasks of this phase are developing a security assessment policy, prioritizing and scheduling assess-
ments, selecting and customizing technical testing and examination techniques, developing the assessment
plan and addressing any legal considerations with respect to the security assessment. According to the NIST
guide “a security assessment should be treated as any other project, with a project management plan to
address goals and objectives, scope, requirements, team roles and responsibilities, limitations, success fac-
tors, assumptions, resources, timeline, and deliverables” [14].

Execution
Execution refers to the activity of executing tests in order to identify vulnerabilities, but also execute "scans"
in order to obtain more information about the target of analysis (or system under test). That is, the NIST
guide explicitly distinguishes between

• the analysis of the target (Target Identification and Analysis Techniques) by means of network dis-
covery techniques, network port and service identification, vulnerability scanning techniques etc.,
and

• the validation of vulnerabilities (Target Vulnerability Validation Techniques) e.g. by means of pass-
word cracking, penetration testing, and social engineering.

Post-execution
The Post-Execution phase treats the findings from the previous phase. The NIST guide proposes a set of
possible actions that range from simple reporting that is used to inform about the findings to developing miti-
gation actions and recommendations that help to mitigate the findings or prevent their exploitation. The activ-
ities in the post-execution phase are not exclusively part of the testing process but are also part of a risk
assessment process that make use of the testing results.

With respect to the testing process described in the previous section,

• the Planning phase corresponds to the Test planning phase of the testing process;
• the Execution phase corresponds to the three activities Test Design & Specification, Test Environ-

ment Set-up and Maintenance, and Test Execution of the testing process;
• the Post-execution phase corresponds to the Test incident reporting activity of the testing process.

One of the main differences between the testing process described in the previous section and the NIST
security testing process is that more emphasis is put on analysing the system under test by e.g. means of
network discovery techniques. This is can be seen even more clearly in the NIST process for penetration
testing (which can be seen as a refinement of the above process) shown in Figure 3, where the test execu-
tion phase is split into two activities: discovery and attack. The testing process described in the previous
section does not have any explicit activity that corresponds to the Target Identification or the discovery activi-
ty of the penetrating-testing process.

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 9 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

TECHNICAL GUIDE TO INFORMATION SECURITY TESTING AND ASSESSMENT

Reporting

AttackDiscoveryPlanning

Additional Discovery

Figure 5-1. Four-Stage Penetration Testing Methodology

The discovery phase of penetration testing includes two parts. The first part is the start of actual testing,
and covers information gathering and scanning. Network port and service identification, described in
Section 4.2, is conducted to identify potential targets. In addition to port and service identification, other
techniques are used to gather information on the targeted network:

� Host name and IP address information can be gathered through many methods, including DNS
interrogation, InterNIC (WHOIS) queries, and network sniffing (generally only during internal
tests)

� Employee names and contact information can be obtained by searching the organization’s Web
servers or directory servers

� System information, such as names and shares can be found through methods such as
NetBIOS enumeration (generally only during internal tests) and Network Information System
(NIS) (generally only during internal tests)

� Application and service information, such as version numbers, can be recorded through banner
grabbing.

In some cases, techniques such as dumpster diving and physical walkthroughs of facilities may be used to
collect additional information on the targeted network, and may also uncover additional information to be
used during the penetration tests, such as passwords written on paper.

The second part of the discovery phase is vulnerability analysis, which involves comparing the services,
applications, and operating systems of scanned hosts against vulnerability databases (a process that is
automatic for vulnerability scanners) and the testers’ own knowledge of vulnerabilities. Human testers
can use their own databases—or public databases such as the National Vulnerability Database (NVD) —
to identify vulnerabilities manually. Appendix E has more information on these publicly available
vulnerability databases. Manual processes can identify new or obscure vulnerabilities that automated
scanners may miss, but are much slower than an automated scanner.

Executing an attack is at the heart of any penetration test. Figure 5-2 represents the individual steps of the
attack phase—the process of verifying previously identified potential vulnerabilities by attempting to
exploit them. If an attack is successful, the vulnerability is verified and safeguards are identified to
mitigate the associated security exposure. In many cases, exploits19 that are executed do not grant the

19 Exploit programs or scripts are specialized tools for exploiting specific vulnerabilities. The same cautions that apply to

freeware tools apply to exploit programs and scripts. Some vulnerability databases, including Bugtraq (available at
http://www.securityfocus.com/) provide exploit instructions or code for many identified vulnerabilities.

 5-3

Figure 3 Four-stage penetration testing methodology

1.3 MODEL-BASED TESTING
In this section we describe the typical steps involved in a model-based testing process based on the ETSI
document Methods for Testing & Specification (MTS); Model-Based Testing (MBT); Requirements for Model-
ling Notations [15].

As illustrated in Figure 4, model-based testing involves the following major activities: modelling for test gen-
eration, test selection criteria definition, test generation, test adaptation, and test execution.

Figure 4 A generic model-based testing process

Modelling for Test Generation
The activity of defining the test model (i. e. computer-readable behavioural model that describes the intended
external operational characteristics of a system, i.e. how the system being modelled interacts with its envi-
ronment, in terms of the system interface) form which tests will be generated.

Test selection
The process or the result of choosing a subset of tests during test generation from a larger or infinite set of
tests which can be derived from a model.

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 10 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Test generation
The automatic derivation of abstract test cases in one or more different formats from a model based on user
defined test selection criteria.

Test adaptation
The process of making the abstract test cases that are generated from the test models into concrete tests
that can be executed.

Test execution
The process of execution the concrete test cases.

The main differences between the generic testing process (described in Section 1.1) and the model-based
testing process described in this section, is that

• The activity test design has been split into modelling for test generation, test selection, and test gen-
eration

• The activity test implementation is referred to as test adaptation.

1.4 RISK ASSESSMENT
In this section, we describe a generic risk assessment process based on the ISO 31000 standard for risk
management [7]. The overall risk management process shown in Figure 1 is taken from [7].

Figure 5 A generic risk management process

As stated in ISO 31000 [7], all activities of an organization may involve risk. Organizations usually manage
risk by identifying it, estimating it and then evaluating it to see whether the risk should be modified by risk
treatment in order to satisfy the risk evaluation criteria. Through this process, communication and consulta-
tion are carried out with stakeholders to monitor and review the risk, and controls that are modifying the risk
are implemented to ensure that no further risk treatment is required. Risk management can be applied to an
entire organization, at its many areas and levels, at any time, and to specific functions, projects and activi-
ties. Although the practice of risk management has been developed over time and within many sectors in
order to meet diverse needs, the adoption of consistent processes within a comprehensive framework can
help to ensure that risk is managed effectively, efficiently and coherently across an organization.

In the context of the DIAMONDS project, we focus on the five steps in the middle of Figure 5.

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 11 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Establishing the Context
Establishing the context refers to the process of defining the external and internal parameters to be taken
into account when managing risk, and setting the scope and risk criteria for the remaining process (adapted
from [7]).

Risk Assessment
Risk assessment is the overall process of risk identification, risk estimation and risk evaluation (adapted from
[7]). We sometimes also refer all five steps in the middle of Figure 5 as risk assessment.

Risk Identification
Risk identification is the process of finding, recognizing and describing risks. This involves identifying
sources of risk, areas of impacts, events (including changes in circumstances), their causes and their poten-
tial consequences. Risk identification can involve historical data, theoretical analysis, informed and expert
opinions, and stakeholder’s needs [7].

Risk Estimation
Risk estimation is the process of comprehending the nature of risk and determining the level of risk. This
involves developing an understanding of the risk. Risk estimation provides the basis for risk evaluation and
decisions on whether risks need to be treated, and on the most appropriate risk treatment strategies and
methods (adapted from [7]).

Risk Evaluation
Risk evaluation is the process of comparing the results of risk estimation with risk criteria to determine
whether the risk and/or its magnitude is acceptable or tolerable. Risk evaluation assists in the decision about
risk treatment (adapted from [7]).

Risk Treatment
Risk treatment is the process of modifying risk which can involve risk mitigation, risk elimination or risk pre-
vention (adapted from [7]).

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 12 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

2. A GENERIC METHODOLOGY FOR MODEL-BASED SECURITY
 TESTING
In the following, we first (in Section 2.1) define a generic process for model-based security testing based on
the discussion in Section 1, then (in section 2.2) we relate the activities of the process to the techniques de-
veloped in the DIAMONDS project.

2.1 A GENERIC PROCESS FOR MODEL-BASED SECURITY TESTING
In this section, we define a generic process for model-based security testing which combines the areas of
testing, security testing, model-based testing, and risk assessment.

The steps of the process are shown in Figure 6 on the right hand side. The process is based on the overview
given in Section 1 and in particular the generic testing process (described in Section 1.1). The main differ-
ences between the testing process and the generic process for model-based security testing are:

• The two activities test identification/discovery and test selection/prioritization have been added be-
tween the activities of test planning and test design & implementation. There are two reasons why
these activities have been introduced into the process: (1) many processes for security testing have
an explicit activity called "discovery" which is missing from the testing process. Since we are target-
ing security testing we therefore think that this activity should be part of the process. (2) Risk as-
sessment results can be used in order to identify and prioritize tests before the test design takes
place, and this is captured by the activities 2.a and 2.b in the generic process.

• The activity called test design & implementation of the testing process has been decomposed into
four activities in the generic model-based security process (test specification/modelling, test genera-
tion, test selection/prioritization, and test adaptation/implementation). The reason for this is that the
distinction between modelling / test generation / test selection is very important in order to highlight
activities that are particular for model-based testing. Notice also that we have used the terms "test
specification/modelling" instead of "test design" and "test adaptation/implementation" instead of "test
implementation" to further highlight the focus on model-based testing.

• The activity 6.b test selection/prioritization has been added in parallel with the test execution activity.
The reason for this is that test selection and prioritization is more important in security testing than
functional testing since security testing typically generates a lot more test cases. In addition to this,
techniques such as fuzzing can also be used on the execution level in order to mutate the test cases
that are executed. Furthermore, it is also possible to use risk assessment results in order to se-
lect/prioritize test cases at the execution level.

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 13 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Test	
 planning

Test	
 selection/
prioritization

Test	
 specification/
modelling

Test	
 generation

Test	
 adaptation/
implementation

Test	
 incident	

reporting

Test	
 selection/
prioritizationTest	
 execution

Test	
 selection/
prioritization

Test	
 identification/
discovery

Generic	
 model-­‐based	
 security	
 testing	
 process

Test	
 planning

Test	
 Design	
 &	

Implementation

Test	
 Environment	

Set-­‐up	
 &	

Maintenance

Test	
 execution

Standard	
 testing	
 process

Test	
 incident	

reporting

Figure 6 The generic process for model-based security testing and its relation to the testing process

In the following, we describe the steps of the process in more detail.

Step 1: Test planning
The test planning is the activity of developing the test plan. Depending on where in the project this process is
implemented this may be a project test plan or a test plan for a specific phase, such as a system test plan, or
a test plan for a specific type of testing, such as a performance test plan (adapted from [8]).

Step 2.a: Test identification/discovery
Test identification/discovery is the activity of identifying/discovering test scenarios or areas or vulnerabilities
in the systems where the testing should be focused. The discovery activity may be performed by e.g. use of
network discovering techniques, vulnerabilities scanners, or through risk assessment.

Step 2.b: Test selection/prioritization
The activity of prioritizing and selecting potential test scenarios that are identified in step 2.a.

Step 3: Test specification/modelling

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 14 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

The activity of defining the model for test generation (i. e. computer-readable behavioral model that de-
scribes the intended external operational characteristics of a system, i.e. how the system being modelled
interacts with its environment, in terms of the system interface) form which tests will be generated.

Step 4.a: Test generation
The automatic derivation of abstract test cases in one or more different formats from a model based on user
defined test selection criteria.

Step 4.b: Test selection/prioritization
The process or the result of choosing a subset of tests during test generation from a larger or infinite set of
tests which can be derived from a model.

Step 5: Test adaptation/implementation
The process of making the abstract test cases that are generated from the test models into concrete tests
that can be executed.

Step 6.a: Test execution
The test execution is the process of running the test procedure resulting from the test design and implemen-
tation process on the test environment established by the test environment set-up and maintenance process.
The test execution process may need to be performed a number of times as all the available test procedures
may not be executed in a single iteration (adapted from [8]).

Step 6.b: Test selection/prioritization
The activity of prioritizing and selecting tests to be executed. The selection criteria may e.g. be based on a
risk assessment. The activity may also involve mutation/fuzzing of concrete executable test cases.

Step 7: Test incident reporting
The test incident reporting is the process of managing the test incidents. This process will be entered as a
result of the identification of test failures, instances where something unusual or unexpected occurred during
test execution, or when a retest passes (adapted from [8]). In test-based risk assessment, the incident re-
porting activity may involve an assessment of how the test results impact the risk picture.

2.2 RELATING DIAMONDS TECHNIQUES TO THE METHODOLOGY
In this section, we relate the DIAMOND techniques that are developed in work package 2 to the activities of
the generic model-based security testing process.

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 15 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Test	
 planning

Test	
 selection/
prioritization

Test	
 specification/
modelling

Test	
 generation

Test	
 adaptation/
implementation

Test	
 incident	

reporting

Test	
 selection/
prioritization	
 Test	
 execution

Test	
 selection/
prioritization

Test	
 identification/
discovery

Risk-­‐based	
 test	

generation

Risk-­‐based	
 test	

prioritization

+	
 Risk-­‐based	
 test	
 identification
+	
 Static/dynamic	
 code	
 analysis	

assisted	
 vulnerability	
 detection

+	
 Anomaly	
 detection	
 with	

machine	
 learning

+	
 Test-­‐based	
 risk	
 assessment
+	
 Automated	
 exploit	
 and	

vulnerability	
 result	
 generation
+	
 Automated	
 monitoring	

result	
 reporting

+Model-­‐based	
 data	
 fuzzing
+Model-­‐based	
 behavioral	
 fuzzing

+Data-­‐fuzzing
+TTCN-­‐3	
 fuzzing

+Model-­‐inference	
 assisted	

evolutionary	
 	
 fuzzing

+	
 Automated	
 fine	
 tuning	
 of	

exploit	
 scripts

+Model-­‐based	
 security	
 testing	

from	
 behavioral	
 models	
 and	
 test	

purposes

+Event-­‐based	
 passive	
 testing
+Symbolic	
 passive	
 testing

+Active	
 intrusion	
 detection
+Vulnerability	
 exploitation
+	
 Dynamic	
 and	
 static	
 reverse	

engineering	
 analysis

GCC	
 Compiler	
 plugins

Generic	
 model-­‐based	
 security	
 testing	
 process

A	
 catalogue	
 of	
 security	
 test	

patterns

Figure 7 Relating DIAMONDS techniques to the generic process

As shown in Figure 7, the techniques developed in the DIAMONDS project support all the activities of the
process except "Test planning" and "Test adaptation/implementation".

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 16 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

3. A SPECIFIC METHODOLOGY FOR MODEL-BASED SECURITY
 TESTING

3.1 OVERVIEW: COMBINED TMSR AND RMST
There are basically two different ways how model-based security testing and security risk analysis can be
combined [23]. In Test-driven Model-based Security Risk Analysis (TMSR), security testing is carried out
twice during the linear security risk analysis process, once to identify risks and once to evaluate them. In
contrast, in Risk-driven Model-based Security Testing (RMST), risk analysis is twice used in the linear securi-
ty testing process, once to identifying the security critical parts of the system under test and once to select
the most important test cases (prioritization). The first approach tries to improve the security risk analysis
with the help of security risk testing and the final output results are risk analysis artefacts. The second ap-
proach tries to improve the security testing with the help of security risk analysis and the final results are test
result reports.
However, it makes sense to combine both approaches into a single process in order to get the most precise
and complete picture. TMSR and RMST can benefit from one another in such a combined process. Indeed it
might be helpful to switch multiple times between security testing and security risk analysis because after
each round of testing and transferring the test results back into the risk picture, the risk analysis might be
more precise and thus allow a better identification and prioritization of the next test cases. Such an iterative
process is not linear, it is an incremental process that can be visualized as a cycle.
For the Risk-driven Model-based Security Testing (RMST) methodology described here, it is assumed that it
is used in a combined process of TMSR and RMST as shown in Figure 8.

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 17 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 8 Model-based security testing process

Note that security risk analysis is seen as both the starting point and the end point for the combined TMSR
and RMST process. The main reason for this design decision is that risk analysis might also include aspects
that cannot be tested while all test results can be regarded as risk analysis results, too.

3.2 FROM RISK ANALYSIS ARTEFACTS TO TEST PATTERNS
Security risk analysis is conducted using the model-based CORAS method [24][9]. The CORAS method is
performed till CORAS step 6, i.e. risk estimation with threat diagrams. The results of this analysis are ex-
pressed with threat diagrams containing likelihood and consequence values. This initial analysis is based on
literature, vulnerability databases and the system model. Its results are highly dependent on the experience
and the skills of the risk analysis team. Important aspects might have been missed completely and the just
guessed likelihood values are eventually very uncertain.

3.2.1 Selecting elements to test
Though the initial analysis is probably somehow imprecise and not very reliable, it is a good starting point for
the first round of the security testing process. Instead of just guessing how likely the potential security risks
are, testing provides reliable results that can be interpreted as indicators for these likelihood values. Security
testing can be used to measure to what extent the so far identified vulnerabilities can be exploited as de-
scribed in the threat scenarios to trigger the identified unwanted incidents.
While the threat diagram immediately can be interpreted as a guide telling the analysts what should be test-
ed, it is not obvious which tests are the most critical and which tests will probably not have a significant im-
pact on the overall risk picture. Since security testing can be expensive and since often both time and re-
sources available for testing are rather limited, it would be most helpful to identify the most relevant test cas-
es and to test these in the first place.

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 18 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Within the combined TMSR and RMST process, the threat diagram is used to identify nothing but the most
critical threat scenario that has not yet been tested. There are two different methods to do so.
The first algorithm tries to evaluate the risk for each threat scenario using appropriate risk functions. Risk
functions have two input parameters: a likelihood value and a consequence value. In CORAS, consequence
values are typically only assigned to relations leading from unwanted incidents to assets. A threat scenario
might have multiple unwanted incidents and each incident might have multiple relations to assets having
different consequence values. For each path in the threat diagram leading form a threat scenario to an asset
and having some consequence value, there might be a different likelihood value. Applying an appropriate
risk function for each path, a risk value for that path can be calculated. If all these risk values are on the
same scale and if that scale allows to add risk values in a reasonable way, then it becomes possible to cal-
culate a single accumulated risk value for each entire threat scenario by summing up all the risk values for
the paths to assets. In order to make sure that the accumulated risk values for different threat scenarios are
comparable, all risk functions must use the same global scale of risk values and there must be an order with-
in the risk values.
The second algorithm uses multiple simulations to identify the most critical threat scenario that has not yet
been tested. For each simulation, it changes the likelihood for some not yet tested threat scenario to zero to
analyse the impact of that threat scenario being absence for the entire risk picture by applying the regular
CORAS risk evaluation (CORAS step 7) for each of these simulation threat diagrams. Finally the results for
the different simulations are compared. Therefore, all risk functions must use the same global scale of risk
values, it must be possible to accumulate the risk values in a sound way and there must be an order within
the risk values. The simulation showing the least critical overall risk picture is exactly the simulation that was
created by setting the likelihood of the most critical likelihood to zero.
In the combined TMSR and RMST process, only a single threat scenario that should be tested next will be
selected. Then that threat scenario will be tested and the result will be used to improve the threat diagram
before trying to identify the next most critical threat scenario which was not yet tested.

3.2.2 Map security test patterns to threat scenarios
Knowing what should be tested next is fine. However, it can be challenging to create effective test cases and
create appropriate metrics that allow sound conclusions for the likelihood values in the threat diagrams. In-
stead of reinventing the wheel each and every time, it makes sense to create and to use a catalogue of test
patterns [25].
Security test pattern do typically consist at least of a name, a context, a problem and a solution description.
For the combined TMSR and RMST process, the threat scenario is a direct counterpart to the problem de-
scription of a test pattern. Hence it is easy to identify a fitting test pattern for the most critical threat scenario
that needs to be tested if such a pattern already exists in some database.
The solution description of a test pattern will typically contain some generic input parameters and some out-
put results. The input parameters should be mapped to the vulnerabilities that have relations leading to the
most critical threat scenario in the threat diagram. Vulnerabilities will be used as the input ports to pass test
values to the system under test. The output results can be mapped to the unwanted incidents that might be
triggered if the threat scenario comes true. Figure 9 shows an example mapping.
Eventually the same test pattern will have to be instantiated multiple times for a single threat scenario be-
cause there are different vulnerabilities and unwanted incidents it can be mapped to.

3.3 FROM TEST PATTERNS TO TEST IMPLEMENTATION AND EXECUTION
Implementation errors are not only a problem of the system under test. Test cases can also be implemented
so that they are not effective – or that they produce wrong results, which would be much worse. A test pat-
tern contains at least a brief description how the test should be implemented and thereby eventually helps to
prevent some potential implementation errors. Probably a test pattern contains even some generic template
code that can be instantiated into executable code.
For effective security testing, often lots of different test cases have to be generated that are close to the lim-
its of valid input sequences. Typically, in such a case not all test cases are created manually. Instead, model
based fuzzing can be used to generate appropriate random test sequences.

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 19 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 9: Mapping threat diagram artefacts to test pattern

The specific model-based security testing methodology described here suggests TTCN-3 to specify the test
cases in a flexible and implementation independent way. Not only the test cases, but also the test patterns
can be created in a flexible way using TTCN-3 notation [22] and it makes sense to use the same notation for
both. There is already tool support available for automatic test-case generation producing TTCN-3 code, e.g.
for model-based fuzz testing the library developed within the DIAMONDS project, see D5 WP3.
To apply the test cases and to aggregate the results, any compatible test execution environment may be
used. Within the DIAMONDS project, for example the commercial TTWorkbench from Testing Technologies
and CertifyIt form Smartesting have been used successfully as the test development and execution envi-
ronment for the Risk-driven Model-based Security Testing methodology described here. A list of additional
test tools with TTCN-3 support can be found at http://www.ttcn-3.org.

3.4 COMPLETE THE ITERATION WITH TMSR
The next step is the integration of the test results into the risk picture. Therefore, the CORAS process is
started again at CORAS step 5 with the test results as new additional input information. These test results
might bring vulnerabilities, threat scenarios and unwanted incidents to attention that were not recognized
before. Additionally, the estimation of likelihoods (i.e. CORAS step 6) might become more precise taking the
test results into consideration. This step is the actual Test-driven Model-based Security Risk Analysis
(TMSR) and a specific methodology for TMSR will be discussed in section 4.
The risk picture can be iteratively improved by starting again with step 3.2.1 using the threat diagram updat-
ed with the latest test results as input.

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 20 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

4. A SPECIFIC METHODOLOGY FOR TEST-BASED RISK ASSESSMENT
In this section, we present an instance of the generic process for model-based security testing which is
based on the CORAS risk assessment process [9]. The process can be seen as an extension of the CORAS
process (which does not specifically take testing into account) into a process that takes testing explicitly into
account.

Many of the activities that we describe in the following are based on the CORAS methodology, and the read-
er is referred to [9] for more details on these. However, to keep this document self-contained, we briefly ex-
plain and give examples of those CORAS activities that are needed to understand the process.

4.1 OVERVIEW OF PROCESS AND INSTANTIATION
In the following, we first (in Section 4.1.1) give an overview of the main steps of the test-based risk assess-
ment process, then we (in Section 4.1.2) describe how the process relates to the generic process for model-
based security testing.

4.1.1 Overview of process
The main steps of the process for test-based risk assessment are shown in Figure 7. In the following, we
briefly describe each of the steps.

1:	
 Establish	
 context	

and	
 target	
 of	

analysis

2:	
 Risk	

identification

3:	
 Risk	
 estimation

4:	
 Risk	
 evaluation

5.a:	
 Test	

identification

5.b:	
 Test	
 selection	
 /	

proritization

6.	
 Test	
 design,	
 	

implementation,	

and	
 execution

7.	
 Risk	
 validation	

and	
 treatment

Test-­‐based	
 risk	
 assessment	
 process

Figure 10 A specific test-based risk assessment process

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 21 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

1: Establish context and target of analysis.
This activity is based on Step 1 – Step 4 of the CORAS risk assessment methodology. The objective of the
activity is to define (1) the target of analysis, (2) the assumptions, focus and scope of the analysis, (3) assets
and stakeholders, (4) consequence and likelihood scales, and (5) risk evaluation criteria in the form of a risk
matrix.

2. Risk identification
This activity corresponds to Step 5 of the CORAS methodology. The objective is to identify unwanted inci-
dents, threats, threat scenarios and vulnerabilities w.r.t. to the identified assets, and to document these using
CORAS threat diagrams.

3. Risk estimation
This activity corresponds to step 6 of the CORAS methodology. The objective is to identify (1) likelihood val-
ues for threat scenarios and unwanted incidents, (2) conditional likelihoods between risk elements, (3) con-
sequence values on relations between unwanted incidents and assets.

4: Risk evaluation
This activity corresponds to Step 7 of the CORAS methodology. The objective is to identify and priori-
tize/evaluate risks, where a risk is understood as an unwanted incident together with a likelihood value and a
consequence value. The risk value of a risk is obtained by plotting the risk into a risk matrix (defined in activi-
ty 1).

5.a : Test identification
The objective of this activity is to identify potential test scenarios that are described by the risk model speci-
fied in the previous activities.

5.b : Test selection/prioritization
The objective of this activity is to prioritize the potential test scenarios that are identified, and then select
those test scenarios that will be implemented into executable test cases (in activity 6).

6.: Test design, implementation, and execution
The objective of this activity is to design, implement executable test cases based on the test scenarios that
have been selected, and to execute the test cases and document the test results.

7.: Risk valuation and treatment
The objective of this activity is to validate the risk model based on the test results obtained in activity 6, and
to suggest treatments for the most severe risks. The latter corresponds to Step 8 of the CORAS methodolo-
gy.

4.1.2 Instantiation
In this section, we describe how the specific process for test-based risk assessment instantiates the generic
model-based security testing process.

The relation between the two processes is illustrated in Figure 11, where the relations between the activities
in the two processes are illustrated by the dotted lines. The main differences between the two processes are:

• In the specific process, test planning is referred to as "Establish context and target of analysis" which
is more in line with the terms that are used in the risk assessment community.

• Activity 2.a. has been decomposed into 4 activities in the specific process (activities 2-4 and 5.a) to
make the risk assessment steps performed prior to the test identification explicit.

• All activities involving test specification/modelling to test execution (activities 3 – 6.b) in the generic
process are in the specific process merged into one activity called Test design, implementation, and
execution. This is because the main emphasis of the specific process is on risk assessment, not
testing.

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 22 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

1:	
 Test	
 planning

4.b:	
 Test	
 selection/
prioritization

3:	
 Test	

specification/
modelling

4.a:	
 Test	
 generation

5:	
 Test	
 adaptation/
implementation

7:	
 Test	
 incident	

reporting

6.b:	
 Test	
 selection/
prioritization6.a:	
 Test	
 execution

2.b:Test	
 selection/
prioritization

2.a:	
 Test	

identification/
discovery

1:	
 Establish	
 context	

and	
 target	
 of	

analysis

2:	
 Risk	

identification

3:	
 Risk	
 estimation

4:	
 Risk	
 evaluation

5.a:	
 Test	

identification

5.b:	
 Test	
 selection	
 /	

proritization

6.	
 Test	
 design,	
 	

implementation,	

and	
 execution

7.	
 Risk	
 validation	

and	
 treatment

Generic	
 model-­‐based	
 security	
 testing	
 process Test-­‐based	
 risk	
 assessment	
 process

Figure 11 Relation the specific test-based risk assessment process to the generic process

4.2 DESCRIPTION OF THE PROCESS
In this section, we describe each of the activities of the process for test-based risk assessment in more de-
tail.

4.2.1 1: Establish context and target of analysis.
This activity is based on Step 1 – Step 4 of the CORAS risk assessment methodology. The output of the
activity is

• A description of the target of analysis,
• A description of the assumptions, focus and scope of the analysis,
• CORAS asset diagrams defining assets and parties,
• Tables defining consequence and likelihood scales, and
• Risk matrix tables defining risk evaluation criteria.

The description of the target of analysis should be based on the documentation that is already available of
the system that is analysed. If this documentation is not sufficient, then a new (high-level) description of the
target may have to be specified. A graphical description of the target system (for instance using UML) is
preferred as this may make the risk identification easier.

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 23 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

The assumptions, focus and scope of the analysis should be document in natural language in addition to the
system documentation.

Assets and parties should be documented using CORAS asset diagrams. An asset is something to which a
party assigns a value and hence for which the party requires protection. A party is an organisation, company,
person, group or other body on whose behalf a risk assessment is conducted. Typically, there is only one
party (the customers on whose behalf the risk assessment is conduced), but there may be more than one.
Identifying and documenting assets is an important part of the risk assessment as every risk will be related to
one or more assets. If a party has no assets to speak of, then there is no need to conduct a risk assessment.

Figure 12 Example of a CORAS asset diagram

An example of a CORAS asset diagram is illustrated in Figure 12. The party (Company) which assigns val-
ues to the assets is specified in the top left corner of the diagram. In the diagram proper, three assets are
specified. So-called harms relationships between the assets are also specified using arrows. A harms rela-
tion expresses that an asset can be harmed through harm to another asset.

At least one likelihood scale must be defined, and all values of the scale should be precisely defined, typical-
ly using intervals of frequencies. An example of a likelihood scale is shown in Table 1.

Table 1 Example of a likelihood scale

Likelihood Description
Certain Five times or more per year [50,infinity> : 10y
Likely Two to five times per year [20,49] : 10y
Possible Once a year [6,19] : 10y
Unlikely Less than once per year [2,5] : 10y
Rare Less than once per ten years [0,1] : 10y

In addition, one consequence scale for each asset should be defined. An example of the definition of conse-
quence scales for the assets "Availability of service" and "Confidentiality of user data" is shown in Table
2and Table 3, respectively.

Table 2 Example of a consequence scale for asset Availability of service

Consequence Description
Catastrophic Downtime within interval [6 hours, …>
Major Downtime within interval [60 min, 6 hours>
Moderate Downtime within interval [30 min, 60 min>

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 24 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Minor Downtime within interval [5 min, 30 min>
Insignificant Downtime within interval [0 min, 5 min>

Table 3 Example of a consequence scale for asset Confidentiality of user data

Consequence Description
Catastrophic [50, …> users are affected
Major [5, 50> users are affected
Moderate [2, 5> users are affected
Minor [1, 2> users are affected
Insignificant [0,1> users are affected

Having defined likelihood and consequence scales, risk evaluation criteria should using risk matrixes. It is
easiest to define only one risk evaluation matrix. However, sometimes it makes more sense to define one
risk matrix per asset.

An example of a risk evaluation matrix is given in Table 4. Here risk values are denoted by green, yellow, or
red. It's up to the risk analysis to define what is mean by these, but typically risks that have a red risk value
are unacceptable and must be treated, risks that are yellow must be monitored, and risks that are green are
acceptable.

Table 4 Example of risk evaluation criteria

Likelihood

 Rare Unlikely Possible Likely Certain

C
on

se
qu

en
ce

 Insignificant
Minor
Moderate
Major
Catastrophic

4.2.2 2: Risk identification
This activity corresponds to Step 5 of the CORAS methodology. The objective is to identify unwanted inci-
dents, threats, threat scenarios and vulnerabilities w.r.t. to the assets that were identified. The output of this
activity is

• A set of CORAS threat diagrams.

Risks should be identified in work shops where risks and their causes are systematically identified by work
shop participants. The description of the target of evaluation should be used as a basis for the risk identifica-
tion and CORAS threat diagrams should be used to document the results on the fly during the risk identifica-
tion process.

CORAS threat diagrams specify directed acyclic graphs whose nodes are of one the following kinds

• Threat: A potential cause of an unwanted incident (illustrated by a man with a warning sign in case
of a human threat).

• Threat scenario: A chain or series of events that is initiated by a threat and that may lead to an un-
wanted incident (illustrated by ellipses with warning signs).

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 25 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

• Unwanted incident: An event that harms or reduces the value of an asset (illustrated by box with a
star in the top right corner).

• Asset: Something to which a party assigns value and hence for which the party requires protection
(illustrated by money bags).

Relations may be of one of the following kinds
• Initiates relation going from a threat A to a threat scenario or unwanted incident B, meaning that A

initiates B.
• Leads to relation going from a threat scenario or unwanted incident A to a threat scenario or un-

wanted incident B, meaning that A leads to B.
• Harms relation going from an unwanted incident A to an asset B, meaning that A harms B.

In addition, relations may be annotated by a

• Vulnerability: A weakness, flaw or deficiency that opens for, or may be exploited by, a threat to
cause harm to or reduce the value of an asset (illustrated by red open locks).

An example of a CORAS threat diagram is shown in Figure 13.

Figure 13 Example of a CORAS threat diagram

4.2.3 3: Risk estimation
This activity corresponds to step 6 of the CORAS methodology. The objective is to identify (1) likelihood val-
ues for threat scenarios and unwanted incidents, (2) conditional likelihoods between risk elements, (3) con-
sequence values on relations between unwanted incidents and assets. The output of the activity is

• A set of CORAS threat diagrams with likelihood and consequence values.

Similar to the risk identification activity, risk estimation should be done in work shops where the work shop
participants estimate likelihood values based on expert judgment and/or historical data.

An example of a CORAS threat diagram with likelihood and consequence values is given in Figure 14. Note
that the likelihood values (such as Possible) and the consequence values (such as Major) that are used in
the diagram should be taken from the likelihood and consequence scales defined in activity 1.

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 26 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 14 Example of a CORAS threat diagram with likelihood values

4.2.4 4: Risk evaluation
This activity corresponds to Step 7 of the CORAS methodology. The objective is to identify and priori-
tize/evaluate risks, where a risk is understood as an unwanted incident together with a likelihood and a con-
sequence value. The risk value of a risk is obtained by plotting the risk into a risk matrix (defined in activity
1).

Table 5 shows an example of a risk evaluation matrix where the two risks shown in Figure 14 have been
inserted (a risk can be seen as an unwanted incident together with a likelihood value and a consequence
value). Here we see that the risk "Service unavailable" has risk value green, while the risk "Confidential user
data disclosed" has risk value yellow.

Table 5 Example of a risk evaluation matrix with risks

Likelihood

 Rare Unlikely Possible Likely Certain

C
on

se
qu

en
ce

 Insignificant
Minor
Moderate Service unavailable
Major Confidential user

data disclosed

Catastrophic

4.2.5 5.a: Test identification
The objective of the test identification activity is to identify potential test scenarios based on the CORAS
threat diagrams that have been specified up to this point. The output of the activity is

• A table describing all potential test scenarios of the CORAS risk diagrams.

There are two threat diagram elements in particular that are useful for identifying possible test scenarios:

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 27 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

• Threat scenario, because they say something about how to test. Threat scenarios typically describe

some sort of misuse-case or attack, and this can be used as a basis for security testing.
• Vulnerability, because they say something about what to look for when testing. Indeed, test results

will usually either confirm the presence of a potential vulnerability, or return inconclusive in the case
that the vulnerability was not found.

One possibility is to let each test scenario correspond to a threat scenario or a vulnerability. However, the
problem with this is that the relationship between vulnerabilities and threat scenarios that are in the diagram
is then lost. We therefore take relations in the CORAS threat diagrams as the basis for test identification. In
particular, we take the approach that each initiates and leads-to relation in the diagram corresponds to a
potential test scenario (since both kinds of relations may involve threat scenarios and vulnerabilities).

The CORAS approach has a procedure for schematically translating CORAS diagrams into English. When
describing the potential test scenarios of a CORAS diagram, we use this to translate every initiates and
leads-to relation in the diagram into English.

An example is given in Table 6, showing a list of potential test scenarios generated on the basis of the threat
diagram in Figure 14. Here we see the English translation of every initiates and lead to relation described in
the CORAS threat diagram shown in Figure 14.

Table 6 Example of identified test scenarios

Id Test scenario
TS1 Hacker initiates Social engineering attempted with likelihood 0.25.
TS2 Hacker initiates SQL injection launched with likelihood 0.5.
TS3 Hacker initiates Denial of service attack launched with likelihood 0.25.
TS4 Social engineering attempted leads to Hacker obtains account user name and password with con-

ditional likelihood 0.3, due to Lack of user security awareness.
TS5 SQL injection launched leads to SQL injection successful with conditional likelihood 0.1, due to

Insufficient user input validation.
TS6 Denial of service attack launched leads Service unavailable with conditional likelihood 0.3, due to

Poor server/network capacity and Non-robust protocol implementation.
TS7 Hacker obtains account user name and password leads to Confidential user data disclosed with

conditional likelihood 1.
TS8 SQL injection successful leads to Confidential user data disclosed with conditional likelihood 0.5.

4.2.6 5.b: Test selection/prioritization
The purpose of the test selection/prioritization activity is to prioritize the identified potential test scenarios,
and based on this, select the test scenarios that will developed further into concrete test cases. The output of
the activity is

• A table with a prioritized list of test scenarios with an indication selected test scenarios.

The details of how to calculate the priority of given test scenario is described in the final deliverable of WP2.
In the following, we give a brief overview.

The priority of a given test scenario is calculated based on three values:

• S (Severity): An estimate of the impact that the test scenario has on the risks. As explained in the
WP2 deliverable, this value is calculated by comparing the risks of two risk models: one model
where the conditional likelihood of the relation corresponding to the test scenario is set to the mini-
mum likelihood value (specifying that the relation will never lead up to something), and one model
where the conditional likelihood of the relation corresponding to the test scenario is set to the maxi-
mum likelihood value (specifying that the relation will always lead up to something). The severity S is

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 28 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

then the difference between the two risk models. A high severity value suggests that the test scenar-
io has a high impact on the risk, and that it therefore should be prioritized for testing.

• T (Testability): An estimate of how testable a test scenario is. Typically, testability is an estimate of
the effort required to implement the concrete test cases of the scenario given the tools and expertise
available, but it can also be based on other considerations such as ethics. For instance, to test sce-
narios related to "Social engineering", one might have to "fool" employees of an organization, and
this might not be considered ethical. The higher the testability, the higher the priority should be.

• U (Uncertainty): An estimate of how uncertain we are about the correctness of the conditional likeli-
hood value of the relation corresponding to a test scenario. If the uncertainty is very low, then there
might not be a need for testing, since then the test results may not give any new information. Con-
versely, a high uncertainty suggests that the test scenario should be prioritized for testing.

Both the uncertainty and the testability values must be supplied by the user. The severity value on the other
hand, can be calculated based on the likelihood and the consequence values that are already in the risk
model as described in the final deliverable of WP2.

In Figure 15, we show an example of a CORAS threat diagram where all initiation and leads-to relations are
annotated by labels of the form T:X, U:Y, specifying that the corresponding test scenario has a testability
value X and an uncertainty value Y. In the figure, both testability and uncertainty values are assumed to be
between 0 and 4.

Figure 15 Example of a CORAS threat diagram with annotations for testability and uncertainty

Having, annotated the risk model with testability and uncertainty values. A table containing a prioritized list of
test scenarios can be generated. An example of such a table is shown in Table 7. Here all test scenarios
correspond to initiates and leads-to relation in Figure 15, and values for testability (T) and uncertainty (U)
have been taken from the annotation in the diagram. The severity value (S) can be calculated automatically
using the procedure described in the deliverable of work package 2. In the example shown in Table 7, dum-
my values have been inserted for severity (i.e. we have not calculated them).

Based on the values for severity, testability, and uncertainty, a priority value can be automatically calculated.
In the example, we have taken the priority of a test scenario to be the product of S, T, and U. However, other
functions are possible.

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 29 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Based on the list of prioritized test scenarios, the user must select the test scenarios that should be refined
into executable test cases. For instance, the user can do this by setting a priority threshold PT, and then
select all test scenarios that have a higher priority than PT.

In Table 7, the two first test scenarios with the highest priority values are shown in boldface, indicated that
these two test scenarios are selected for further testing, and the others not.

Table 7 Example of a prioritized list of test scenarios

Id Test scenario S T U Priority
TS5 SQL injection launched leads to SQL injection

successful with conditional likelihood 0.1, due to
Insufficient user input validation.

3 4 3 36

TS6 Denial of service attack launched leads Service
unavailable with conditional likelihood 0.3, due to
Poor server/network capacity and Non-robust pro-
tocol implementation.

3.2 2 3 19.2

TS4 Social engineering attempted leads to Hacker obtains
account user name and password with conditional
likelihood 0.3, due to Lack of user security awareness.

1.5 1 3 4.5

TS1 Hacker initiates Social engineering attempted with
likelihood 0.25.

2.5

0 4 0

TS2 Hacker initiates SQL injection launched with likelihood
0.5.

2.5 0 4 0

TS3 Hacker initiates Denial of service attack launched with
likelihood 0.25.

2.5 0 4 0

TS7 Hacker obtains account user name and password
leads to Confidential user data disclosed with condi-
tional likelihood 1.

1 4 0 0

TS8 SQL injection successful leads to Confidential user
data disclosed with conditional likelihood 0.5.

2 4 0 0

4.2.7 6: Test design, implementation, and execution
The objective of activity 6 is to design, implement and execute test cases for each of the test scenarios and
each vulnerability in the test scenarios that were selected in the activity 5:

• The output of the activity is a table which describes the test results for each selected test scenario
and vulnerability.

Our process does not stipulate the manner in which test are designed, implemented, and executed. Howev-
er, the test results should be documented in a manner that makes it convenient to assess their impact on the
risk model. To this end, we suggest that the test results be documented in a table consisting of the following
columns:

• Test scenario ID: The of the test scenario that was tested.
• Vulnerability: A vulnerability related to the test scenario that was tested.
• Likelihood: A value indicating the likelihood that the vulnerability that was tested is actually present

in the system under test.
• Exploitability: A value indicating how hard it is to exploit the vulnerability, or more precisely how

likely it is that an attempt to exploit the vulnerability will result in the outcome of the test scenario,
where outcome refers to the target threat scenario or unwanted incident of the relation from which
the test scenario was derived.

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 30 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

An example of a test result report is given in Table 8. Here we see the two test scenarios that were selected
in the example of activity 5 and their associated vulnerabilities. In the cases that the test results confirm the
presence of vulnerabilities in the system, then the likelihood value should be 1 (indicating that it is 100%
certain that the vulnerability exists). For instance, if the testing found vulnerability "insufficient user input vali-
dation", then its likelihood value should be set to 1 as shown in Table 8. If a tested vulnerability is not found
by the tests, then this does not necessarily mean that the vulnerability does not exists because it is possible
the tests failed to uncover it. In this case, the user must estimate the likelihood value based on experience
and the test results, for instance by looking at the number of tests that were executed or some kind of test
coverage measure.

Table 8 Example of test result report

Test scenar-
io ID

Vulnerability Likelihood Exploitability

TS5 Insufficient user input validation 1 0.8
TS6 Poor server/network capacity 0.4 0.7
TS6 Non-robust protocol implementation 0.2 0.6

4.2.8 7: Risk validation and treatment
The objectives of activity 7 are to (1) validate the risk model based on the test results and to update the risk
model based on the test results (if necessary), (2) propose treatments for the most severe risks. The output
of the activity is

• An updated CORAS risk model
• An updated Risk evaluation matrix
• A CORAS treatment diagram

The user should use the test report as a basis for validation and updating the CORAS model. Specifically, for
each test scenario, the user must decide whether the likelihood and exploitability values of the vulnerabilities
of the test scenario are consistent with the conditional likelihood value of the relation in the risk model from
which the test scenario was derived. One way of doing this is to let the conditional likelihood value of a rela-
tion be equal to the sum of the likelihood value multiplied by the exploitability value for each vulnerability of
the test scenario. If we follow this procedure based on the test report of Table 8, we get

• Conditional likelihood of TS5 = 1 * 0.8 = 0.8
• Conditional likelihood of TS6 = (0.4 * 0.7) + (0.2 * 0.6) = 0.4

The CORAS risk model should be updated based on the new conditional likelihood values that were derived
based on the test report. First, all the conditional likelihood values must be updated, and then the likelihood
values of the threat scenario and unwanted incidents that depend on these conditional likelihood values must
be recalculated using on the CORAS rules for likelihood calculation.

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 31 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 16 Example of an updated risk model based on test results

Figure 16 shows an example of an updated risk model. Here the risk model shown in Figure 15 have been
updated based on the test results of Table 8. Specifically, the conditional likelihood value of the relation cor-
responding to test scenario TS5 has been changed to 0.8 (from 0.1), and the conditional likelihood value of
the relation corresponding to test scenario TS6 has been changed to 0.4 (from 0.3). In addition, these
changes have affected the likelihood values of some of the threat scenarios and unwanted incidents that are
targeted by the affected relations. In particular, the likelihood value of threat scenario "SQL injection suc-
cessful" has changed from "Unlikely" to "Likely", and the likelihood value of the unwanted incident "Confi-
dential user data disclosed" has changed from "Unlikely" to "Possible".

If the update of the risk model resulted in changes to the likelihood values of the unwanted incidents in the
model, then the risk evaluation matrix must also be updated. For instance, since the likelihood value of the
unwanted incident "Confidential user data disclosed" has changed from "Unlikely" to "Possible" in Figure 16,
then the corresponding risk is categorized as red when plotting in into the risk evaluation table (see Table 9).
Comparing the previous risk evaluation matrix (Table 8) to the updated matrix, we see that one risk has
changed from yellow to red as a result of taking the test results into account.

Table 9 Example of an updated risk evaluation matrix

Likelihood

 Rare Unlikely Possible Likely Certain

C
on

se
qu

en
ce

 Insignificant
Minor
Moderate Service unavailable
Major Confidential user

data disclosed
Catastrophic

After the risk model and the risk evaluation matrix has been updated based on the test results, treatments for
the most severe risks must be proposed. This should be done according to the CORAS methodology, where
treatments are specified in so-called CORAS treatment diagrams.

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 32 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

An example of a CORAS treatment diagram is shown in Figure 17. Here the treatment "Implement input
validation mechanism" has been associated with the vulnerability "Insufficient user input validation".

Figure 17 Example of a CORAS treatment diagram

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 33 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

5. A CATALOGUE OF SECURITY TEST PATTERNS

Patterns are an established approach for facilitating the reuse of known solutions, guidelines or best practic-
es to recurring problems in various domains (software engineering, design, etc.). There have been some
efforts for applying the same approach to testing and test automation [16][17]. Software security is another
domain in which patterns have been gaining more popularity recently.

Although security test patterns are a relatively new research field, several definitions have been provided by
the community. For instance, the SecurityTestPatterns group associated to MITRE‘s Common Weaknesses
Enumeration (CWE) define them as: „A software security test pattern is a recurring security problem, and the
description of the a test case that reveals that security problem, that is described such that the test case can
be instantiated a million times over, without ever doing it the same way twice.“
While several definitions are now given, the notion of "design patterns" could be close to our used definition.
A design pattern is a description of a recurring problem and a well-defined description of the core solution to
the problem that is described such that the pattern can be used many times but never in exactly the same
way [18].

Our notion is visible in the following question: "what is the pattern to test the security properties of an SUT?"
We finally embrace both of the above definitions to define patterns that are, on the one hand, generic
enough to adapt to various testing strategies and, on the other hand, include patterns for concrete security
test cases.

We give in the following subsections an overview of the security test patterns defined by this work package
and detailed in the deliverable D3.WP4.T1 as well as some of their uses by the DIAMONDS partners in the
WP1 use cases.

5.1 OVERVIEW ON THE DIAMONDS SECURITY TEST PATTERNS

We present in this section a summary of the security test patterns that have been identified in DIAMONDS.
We summarize the 17 test patterns by the following table by indicating the context used, specifically the test-
ing approaches, the problems addressed by the patterns as well as some of the WP1 case studies in which
some patterns have been used.

Pattern	
 Name	
 Context	
 Problem	
 Case	
 Studies	

Attacking	

Authentication	

Mechanism	

Testing	
 Approach(es):	

detection,	
 test	
 data	

This	
 pattern	
 addresses	
 how	
 to	
 check	
 that	
 the	

system	
 handles	
 high	
 number	
 of	
 authentica-­‐
tion	
 attempts	
 with	
 incorrect	
 passwords.	

Relevant	
 for	
 authenticating	

	

Testing	
 the	
 safe	

storage	
 of	

authentication	

credentials	

Testing	
 Approach(es):	

detection	

This	
 pattern	
 addresses	
 how	
 to	
 check	
 that	
 the	

system	
 store	
 in	
 a	
 safe	
 way	
 the	
 user	
 authenti-­‐
cation	
 information.	

Relevant	
 for	
 user	
 authentication	

management	

	

Verify	
 audited	

event’s	
 presence	

Test	
 Pattern	
 Kind:	
 Behav-­‐
ioral	

Testing	
 Approach(es):	

Detection	

This	
 pattern	
 addresses	
 how	
 to	
 check	
 that	
 a	

system	
 logs	
 a	
 particular	
 type	
 of	
 security-­‐
relevant	
 event	
 for	
 auditing	
 purpose	

	

Verify	
 default-­‐
authentication	

Test	
 pattern	
 kind:	
 Behav-­‐
iorTesting	
 Approach(es):	

This	
 pattern	
 addresses	
 how	
 to	
 check	
 default	

authentication	
 mechanisms.	
 	

	

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 34 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

credentials	
 to	
 be	

disabled	
 on	

production	
 system	

Prevention	
 Relevant	
 for	
 systems	
 based	
 on	
 open-­‐source	

software.	

Verify	
 audited	

events’	
 content	

Test	
 Pattern	
 Kind:	
 Behav-­‐
ioral	

Testing	
 approach(es):	

Detection	

This	
 pattern	
 addresses	
 how	
 to	
 check	
 that	
 a	

system	
 logs	
 a	
 particular	
 type	
 of	
 security-­‐
relevant	
 event	
 for	
 auditing	
 purpose	

	

Verify	

presence/efficiency	

of	
 prevention	

mechanism	
 against	

brute	
 force	

authentication	

attempts	

Test	
 pattern	
 kind:	
 Behav-­‐
ior	

Testing	
 Approach(es):	

Prevention,	
 Detection	

This	
 pattern	
 addresses	
 how	
 to	
 check	
 pass-­‐
word	
 brute-­‐forcing	
 attack	
 on	
 computing	

systems	
 providing	
 a	
 password-­‐based	
 authen-­‐
tication	
 scheme.	

	

Verify	

presence/efficiency	

of	
 encryption	
 of	

communication	

channel	
 between	

authenticating	

parties	

Test	
 pattern	
 kind:	
 Behav-­‐
ior	

Testing	
 Approach(es):	

Prevention	

This	
 pattern	
 addresses	
 how	
 to	
 check	
 Man-­‐in-­‐
the-­‐middle	
 attacks.	
 Relevant	
 to	
 protect	
 the	

data	
 exchange	
 between	
 authenticating	
 par-­‐
ties	
 from	
 eavesdropping	
 attempts.	

	

Usage	
 of	
 Unusual	

Behavior	
 Sequences	

Test	
 pattern	
 kind:	
 Behav-­‐
ior	

Testing	
 Approach(es):	

Prevention	

This	
 pattern	
 addresses	
 some	
 attacks	
 (e.g.	

Authentication	
 bypass)	
 that	
 may	
 be	
 possible	

by	
 subjecting	
 the	
 system	
 to	
 a	
 behavior	
 se-­‐
quence	
 that	
 is	
 different	
 from	
 what	
 would	
 be	

normally	
 expected.	
 In	
 certain	
 cases,	
 the	

system	
 may	
 be	
 so	
 confused	
 by	
 the	
 unusual	

sequence	
 of	
 events	
 that	
 it	
 would	
 crash.	

DCo	
 (
 IT	
 –Symbolic	

passive	
 testing)	

Giesecke	
 &	

Devrient	

Detection	
 of	

Vulnerability	
 to	

Injection	
 Attacks	

Test	
 pattern	
 kind:	
 Data	

Testing	
 Approach(es):	

Prevention	

This	
 pattern	
 addresses	
 the	
 test	
 of	
 infor-­‐
mation	
 systems	
 resilience	
 to	
 injection	
 at-­‐
tacks	
 to	
 increase	
 their	
 security	
 confidence	

level.	

	

Detection	
 of	

vulnerability	
 ot	
 data	

structure	
 attacks	

Test	
 pattern	
 kind:	
 Data	

Testing	
 Approach(es):	

Prevention	

This	
 pattern	
 addresses	
 how	
 to	
 detect	
 vulner-­‐
abilities	
 to	
 data	
 structure	
 attacks.	

Relevant	
 to	
 avoid	
 attacker	
 manipulating	
 and	

exploiting	
 characteristics	
 of	
 system	
 data	

structures.	

Giesecke	
 &	

Devrient	

Session	

Management	
 Attack	

Testing	
 Approach(es):	

behavioral	
 and	
 test	
 data	

This	
 pattern	
 addresses	
 how	
 to	
 check	
 that	
 the	

system	
 returns	
 an	
 authorization	
 error	
 when	

the	
 session	
 information	
 is	
 faked	
 or	
 forged,	

and	
 that	
 no	
 sensitive	
 information	
 is	
 returned	

after	
 requests.	

Relevant	
 for	
 managing/controlling	
 access	
 the	

system.	

	

Redirect	
 header	

manipulation	

Testing	
 Approach(es):	

design	

This	
 pattern	
 addresses	
 how	
 to	
 check	
 that	
 the	

system	
 handles	
 correctly	
 the	
 users	
 redirec-­‐
tion	
 after	
 authentication.	

Relevant	
 for	
 URL	
 parameters	
 rejection.	

	

Malicious	
 file	
 upload	
 Testing	
 Approach(es):	

test	
 data	

This	
 pattern	
 addresses	
 how	
 to	
 check	
 that	
 the	

system	
 should	
 reject	
 the	
 file	
 upon	
 selection	

or	
 should	
 not	
 allow	
 it	
 to	
 be	
 stored.	

	

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 35 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Relevant	
 for	
 controlling	
 stored	
 or	
 uploaded	

files.	

Search	
 for	

documented	

passwords	

Testing	
 Approach(es):	

detection,	
 test	
 data	

This	
 pattern	
 addresses	
 how	
 to	
 check	
 that	
 the	

system	
 should	
 not	
 list	
 any	
 default	
 passwords	

or	
 usernames	
 that	
 are	
 hard-­‐coded	
 into	
 the	

product.	

	

Impersonating	

trusted	
 external	

resources	

Testing	
 Approach(es):	

design,	
 data	

This	
 pattern	
 addresses	
 how	
 to	
 check	
 that	
 the	

system	
 refuses	
 (or	
 behave	
 as	
 such)	
 to	
 con-­‐
nect	
 an	
 impersonated	
 server.	
 Indeed,	
 by	
 DNS	

spoofing	
 or	
 DNS	
 entry	
 modifications,	
 the	

authentic	
 external	
 server	
 may	
 be	
 replaced.	

Relevant	
 for	
 checking	
 trusted	
 path/channels.	

	

Exposing	

functionality	

requiring	

authorization	

Testing	
 Approach(es):	

design	

This	
 pattern	
 addresses	
 how	
 to	
 check	
 that	
 the	

system	
 disallows	
 a	
 user	
 to	
 action	
 an	
 object	
 if	

she	
 has	
 not	
 the	
 proper	
 credentials.	

	

	

Sensitive	

information	

confidentiality	

Testing	
 Approach(es):	

architectural	

This	
 pattern	
 addresses	
 how	
 to	
 check	
 that	
 the	

system	
 use	
 a	
 known	
 safe	
 encryption	
 proto-­‐
col.	

Relevant	
 to	
 test	
 if	
 any	
 sensitive	
 or	
 personal	

information	
 contained	
 within	
 an	
 object	
 is	

only	
 accessible	
 to	
 the	
 user	
 who	
 acted	
 it.	

	

5.2 SECURITY TEST PATTERN APPLICATION IN THE CASE STUDIES

As above mentioned, several security test patterns have been defined covering several security areas. One
of our goals was therefore to study their applicability to the WP1 industrial use cases. In the following, we
present the patterns applied (by FOKUS, IT and INPG) to three different case studies provided by the indus-
trial DIAMONDS partners, focused on three different industrial domains: the Banking, Automotive and Smart
cards areas.

5.2.1 Banking case study: Giesecke & Devrient (FOKUS)
The testing process in the Giesecke & Devrient case study has started with a concise security risk analysis
following the CORAS methodology. As result of the risk analysis, several vulnerabilities were revealed that
should be tested if they actually exist within the SUT. In order to generate appropriate tests for these vulner-
abilities, the application of security test patterns has been considered a suitable way to select test generation
techniques and test procedures. Those security test patterns constitute the link between security risk analy-
sis and security testing. In the case study two security test patterns are fitting to the results of the risk analy-
sis and have been applied to the test generation process of the Giesecke & Devrient case study.

1. Security test pattern: Usage of unusual behavior sequences. The application of this security test
pattern leads to behavioral fuzzing in order to generate attacks based on invalid message sequenc-
es. The test system creates invalid message sequences instead of invalid input data by modifying
functional test cases. The behavioral fuzzing approach developed in DIAMONDS uses UML se-
quence diagrams and modifies these. The generated test cases aim at revealing authentication by-
pass vulnerabilities by submitting messages for configuring the banknote processing system before
or without authentication.

2. Security test pattern: Detection of vulnerability to injection attacks. The application of this securi-
ty test pattern leads to data fuzzing approaches (e.g. to detect SQL injection flaws) were applied by
a new developed fuzz testing extension for TTCN-3. Data fuzzing sends a large number of invalid
values to the system under test at certain points within a test case

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 36 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 18: Application of test pattern to risk assessment artefacts

The application of test pattern allows for an early identification of test techniques and test methods. They can
be applied directly after the initial security risk assessment has been completed. In DIAMONDS we have
developed a tool supported traceability method that allow relating artefacts from the security risk assessment
with artefacts from the testing and preserving this relationship over the whole (test) development process.
Following this approach the assignment of test pattern to risk assessment artefacts is one of the first steps
for testing. Figure 18 shows the assignment of the test pattern “Usage of unusual behavior sequences” to
one of the risk assessment models of the G&D case study. On basis of the test pattern and its assignments
to risk assessment artefacts we have started the test specification and generation following the recommen-
dations given by the test pattern.

5.2.2 Automotive case study: Dornier Consulting (IT)

Security test pattern: Usage of Unusual Behavior Sequences

The test procedure template provided in D3.WP4.T1 for this particular test pattern was mainly intended for
active testing. However, for our passive testing approach, we have tried to adapt certain steps from the tem-
plate and modified some parts of it to suit our testing approach. Based on the template provided for the secu-
rity test pattern, the following steps were followed to detect the attack pattern.

1) Based on the information obtained from the case study provider (DCo) and the Bluetooth specifica-
tion the Bluetooth pairing scenario between the car’s audio system and the Bluetooth enabled phone
was modeled using the sequence diagram to understand the sequence behavior.

2) As our approach was based on passive testing or post-mortem analysis, we collect the trace from
the system and observe if the normal behavioral sequence was correctly carried out.

3) According to the template the system was subjected to each of the new behavior sequences ob-
served and for each of those the system was analyzed for any exceptional behavior. But in our ap-
proach in order to create an exceptional behavior we introduced an attack scenario called Bluestab-
bing attack manually in the trace obtained to differentiate it from the normal behavior. In the

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 37 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Bluestabbing attack, the attacker impersonates as a legitimate user and modifies the Bluetooth de-
vice name of a legitimate user by resending a message with a badly formatted device name by caus-
ing the slave device to confuse during the device discovery phase (Inquiry). But this attack could be
more severe, if the Bluetooth attacker modifies his own local device name as a legitimate user’s de-
vice name, and tries to establish a connection with the other Bluetooth device by capturing the
passwords and sensitive information from the device (a detailed description is given in D5.WP2).

4) The system trace with the attack scenario was again monitored using our symbolic passive testing
approach as described in the D5.WP2 to detect the behavioral and attack sequence.

5) The prototype model at the end of the evaluation provides a verdict Pass/Fail/Attack-
Pass/Inconclusive.

5.2.3 Smart cards case study: Gemalto (INPG)

Security Test Pattern: Detection of Vulnerability to Injection Attacks

Based on the template described in D3WP4T1 in section 4.1.7 "Detection of Vulnerability to Injection At-
tacks", INPG incorporated various steps from the pattern in the proposed method that automates the process
of generating inputs that trigger XSS vulnerability in a web application. INPG has adopted, adapted and for-
malized the pattern and following is the short description of applying it on Gemalto case study.

Grenoble INP searched for Cross Site Scripting (XSS) vulnerabilities in the Gemalto case study. XSS is a
particular instance of the command injection problem, in which an attacker sends input values crafted to
escape outside a structure in which the developers assumed the input would be confined. By doing so, at-
tacker can make the SUT to execute code they control and which was not intended by the developers. In the
case of XSS, the objective is to escape outside an HTML parse tree node. XSS patterns are characterized
by a taint flow from an input parameter (e.g., variable in an HTTP GET request) to an output (HTML
webpage). Detecting such patterns is not trivial as it requires the tester to be able to navigate in the SUT and
to exert a wide range of input values, thus it requires knowledge about the control flow and the data flow of
the SUT.

Grenoble INP created an Evolutionary Fuzzing approach (see doc. D3WP2), implemented in a tool Kamele-
onFuzz, that automatically infers the necessary knowledge to focus on parts of the SUT on which this taint
flow property hold. Once this knowledge is acquired, KameleonFuzz exerts a wide range of "fuzzed" (mali-
cious) values in input and observes whether an XSS pattern is observed or not. Such inputs are evolved
towards better ones according to a heuristic (XSS specific) to increase the chance of discovering XSS. In
effect, Genetic Algorithm (GA) automates the process of generating inputs that contain certain “malicious
data” as mentioned in the security test pattern template. These inputs have more chances of triggering XSS
vulnerability.

However, due to limited access, Grenoble INP could not test it with full coverage of the SUT (i.e. TSM). As a
result, no XSS vulnerabilities were found. It was also noticed that the application (SUT) was built with good
care for such vulnerabilities.

For the same case study, Smartesting formalized test patterns through test purposes (cf D5.WP2 and
D5.WP3 DIAMONDS deliverables) and use CertifyIt technology to generate attack vectors on Gemalto TSM.

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 38 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

6. CONCLUSION
This document constitutes the third and final deliverable of work package 4, documenting results of task T4.1
(security patterns) and tasks 4.2 and task 4.3 on risk- and model-based security testing methodologies.
While the other work packages of the DIAMONDS project describe techniques/methods and tools, work
package 4 describes processes/guidelines for applying these tool and techniques in practice.

The main objective of this deliverable has been to define a generic process for model-based security testing,
provide examples of concrete instances of the process, and to provide an overview of the security test pat-
terns that have been identified in the DIAMONDS project.

The generic process for model-based security testing combines four main areas: testing, model-based test-
ing, security testing, and risk assessment. At the beginning of this document (in Section 1), we provided rep-
resentative processes for each of the four areas based on existing standards and guidelines. Then in, Sec-
tion 2, we combined these processes into a generic process for model-based security testing, and gave an
overview of how the DIAMONDS techniques relate to the activities of the process.

In Section 3 and Section 4, we presented concrete instances/refinements of the generic process, focusing on
model-based security testing and test-based security risk assessment, respectively. Finally, in Section 5, we
provided an overview of the security test patterns that have been identified in the DIAMONDS project, and
described their application in the DIAMONDS case studies

DIAMONDS Security Testing Methodology
Deliverable ID: D5_4_T1-T3

Page : 39 of 39

Version: 1.0
Date : 16.05.2013

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

7. REFERENCES

[1] Information security. http://en.wikipedia.org/wiki/Information_security, last date accessed 17.09.2011.
[2] Model based testing. http://en.wikipedia.org/wiki/Model-based_testing, last date accessed
17.09.2011.
[3] P. Bourque and R. Dupuis. Guide to the software engineering body of knowledge 2004 version.
Technical report 19759, IEEE Computer Society, 2004.
[4] The Committee on National Security Systems. National Information Assurance (IA) Glossary, CNSS
Instruction No. 4009, 2010.
[5] IEEE Computer Society. IEEE 829 - Standard for Software and System Test Documentation, 2008.
[6] International Standards Organization. ISO 27000:2009(E), Information technology - Security tech-
niques - Information security management systems - Overview and vocabulary, 2009.
[7] International Standards Organization. ISO 31000:2009(E), Risk management– Principles and guide-
lines, 2009.
[8] International Standards Organization. ISO 29119 Software and system engineering - Software Test-
ing-Part 2 : Test process (draft), 2012.
[9] M.S. Lund, B. Solhaug, and K. Stølen. Model-Driven Risk Analysis: The CORAS Approach. Springer,
2011.
[10] The Open Group. The Open Group Architecture Framework Version 9.1, 2011.
[11] Testing Standards Working Party. BS 7925-1 Vocabulary of terms in software testing. 1998.
[12] F. John Reh. Glossary of business management terms and abbreviations.
http://management.about.com/cs/generalmanagement/g/objective.htm, last date accessed 19.04.2012.
[13] S. Chao William. System Analysis and Design: SBC Software Architecture in Practice. Lambert Aca-
demic Publishing, 2009.
[14] Scarfone K., M. Souppaya, A. Cody, A. Orebaugh: Technical Guide to Information Security Testing
and Assessment. NIST Special Publication 800-115 (2008)
[15] ETSI (European Telecommunication Standards Institute): Methods for Testing & Specification
(MTS); Model-Based Testing (MBT); Requirements for Modelling Notations, ES 202 951 v 1.1.1 (2011)
[16] R. Binder. Testing Object Oriented Systems: Models, Patterns and Tools. Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA, 1999.
[17] A. Vouffo Feudjio, I. Schieferdecker; Test patterns with TTCN-3; Proceedings from the International
Workshop on Formal Approaches to Testing of Software - FATES/RV , pp. 170-179, 2004
[18] C. Alexander; A Pattern Language: Town, Buildings, Construction; Oxford, UK: Oxford University
Press, 1977
[19] Department of Defense: Procedings for Performing a Failure Mode, Effects and Criticality Analysis,
MIL-STD-1629, Washington 1949/1980, http://www.fmea-fmeca.com/milstd1629.pdf (2012-04-15)
[20] Joanne Bechta Dugan, Kevin J. Sullivan, David Coppit: Developing a low-cost high-quality software
tool for dynamic fault-tree analysis, IEEE Transactions on Reliability 2000-03 pp. 49-59, IEEE Computer
Society 2000, ISSN: 0018-9529, Digital Object Identifier: 10.1109/24.855536
[21] R. Binder. Testing Object Oriented Systems: Models, Patterns and Tools. Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA, 1999.
[22] A. Vouffo Feudjio, I. Schieferdecker; Test patterns with TTCN-3; Proceedings from the International
Workshop on Formal Approaches to Testing of Software - FATES/RV , pp. 170-179, 2004
[23] G. Erdogan, Y. Li, R. K. Runde, F. Seehusen, K. Stølen: Conceptual Framework fort he DIAMONDS
Project, Oslo May 2012
[24] Ida Hogganvik, Ketil Stølen: A Graphical Approach to Risk Identification, Motivated by Empirical In-
vestigations, 9th International Conference on Model Driven Engineering Languages and Systems (MoD-
ELS 2006), Lecture Notes in Computer Science 4199 pp. 574-588, Springer Berlin Heidelberg 2006, DOI:
10.1007/11880240_40
[25] B. Smith, L. Williams: On the Effective Use of Security Test Patterns, Proceedings of the Sixth Inter-
national Conference on Software Security and Reliability (SERE), 2012 IEEE, pp. 108-117, DOI:
10.1109/SERE.2012.23

