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EXECUTIVE SUMMARY 

DIAMONDS considers the particular issue of security testing of networked systems to validate the 
dependability of networked systems in face of malice, attack, error or mischance. Testing is still the main 
method to reliably check the functionality, robustness, performance, scalability, reliability and resilience of 
systems as it is the only method to derive objectively characteristics of a system in its target environment.  
A number of approaches have long been around to target specific attacks on systems (e.g. vulnerability 
scanners), but when we refer here to the more systematic testing of systems with respect to specified 
policies or security properties, testing a system for its security is a relatively new concern that has started to 
be addressed in the last few years. 
 
D1.WP2 already reviewed the state-of-the-arts methods used in security testing. This document D2.WP2 
describes the main concepts dedicated to model-based security testing used by the different project 
partners. It can be considered as a progress report of the work done of each partner to develop its testing 
approach.  
 
Monitoring (referred also by passive testing) consists of detecting faults in a system under test by observing 
its input/output behaviours without interfering with its normal operations. The usual approach of passive 
testing consists of recording the trace produced by the implementation under test and comparing this trace 
with a specification. Other approaches explore relevant properties required for a correct implementation, and 
then check them on the implementation traces of the system under test. Chapter 1 describes the concepts 
followed by DIAMONDS partners in the monitoring and inspection field. 
 
Active testing is accomplished by applying a sequence of inputs to the implementation, by means of an 
external tester, and verifying whether the sequence of outputs is the one specified. These sequences may 
be constructed from formal models. Most of the works are on testing software control parts, and technologies 
are related to the approaches of model-based testing. Traditional testing methods tend to test a system as a 
whole or to test their components in isolation. Testing these systems as whole becomes difficult due to the 
large number of combinations of system states and variable values, known as the state space explosion. It is 
a challenge to be able to minimize the number of tests needed while guaranteeing good fault coverage. This 
standard method is mainly oriented towards practical needs. Chapter 2 describes partners’ approaches for 
active testing. 
 
Security testing often lacks systematic approaches, that enable the efficient and goal oriented identification, 
selection and execution of test cases. A successful approach to resolve this problem is to use risk-oriented 
testing, where one uses software risks analysis as the guiding factor to solve decision problems during 
testing, e.g. the selection and prioritization of test cases. This approach is advocated by different security 
testing standards and manuals (NIST, OSSTMM etc.). Chapter 3 describes the partners approaches in this 
domain. 
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INTRODUCTION 
 
Testing is still the main method to check the functionality, robustness, performance, scalability, reliability and 
resilience of systems as it is the only method to derive objectively characteristics of a system in its target 
environment. 
 
In the case of security, software systems are examined, using software security testing, for security 
properties such as confidentiality, integrity, authentication, authorization, availability, and non-repudiation. In 
general the software security testing activities can be divided into functional security testing and security 
vulnerability testing [74]. While security functional testing is used to check the functionality, efficiency and 
availability of the specified and carefully planned security functionalities and systems (e.g. firewalls, 
authentication and authorization subsystems, access control), security vulnerability testing directly addresses 
the identification and discovery of actually undiscovered system vulnerabilities that are introduced by security 
design flaws. 
 
Systematically testing a system for its security is a relatively new concern. Of course, a number of tools have 
long been around to target specific attacks on systems (e.g. vulnerability scanners). Different broader 
approaches have also been proposed in the recent years. 
 
This document lists a number of approaches dedicated to testing software security and followed by 
DIAMONDS partners. It is organized as follows:  
 
Chapter 1 presents monitoring and inspection concepts mainly in network security and binary code 
instrumentation contexts. Monitoring (also referred to passive testing) is the activity of detecting faults in a 
system under test by observing its input/output behaviours without interfering with its normal operations. 
 
In Chapter 2, active testing concepts are presented; active testing consists in applying a sequence of inputs 
to the implementation, by means of an external tester, and verifying whether the sequence of outputs is the 
one expected.  
 
Chapter 3 describes risk based testing concepts. Risk-oriented testing or risk-based testing characterize a 
methodology that makes software risks the guiding factor to solve decision problems during testing, e.g. the 
selection and prioritization of test cases.  
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1. MONITORING AND INSPECTION CONCEPTS 

1.1 INTRODUCTION 

 
Network monitoring is a laborious and demanding task that is vital for the network infrastructure. Service 
providers are constantly striving to keep the network operation stable, smooth and safe. If the network 
becomes vulnerable, under attack or breaks down, even for a small period of time, the service provider's 
ability to deliver secure and high-quality services would be compromised. Network administrators must be 
proactive rather than reactive: monitoring the network traffic and security and performance at all times, and 
verifying that security threats do not occur within the network perimeter. 
 
In this section, we describe the work done by DIAMONDS partners in the context of monitoring and 
inspection concepts: 

• SINTEF presents in section 1.2 how security properties can be defined based on UML sequence 
diagrams and state machines and how we can make transformation between these two models 

• OUSPG describes in section 1.3 their methodology for network instrumentation and data extraction 
in different network ISO layers. 

• Montimage presents in section 1.4 its advances network traffic analysis based on MMT-Security 
properties. 

• Institut Telecom SudParis contribution is presented in section 1.5 where they describe horn logic 
based security analysis of captured trace files. 

• Machine learning techniques are presented by VVT in section 1.6 

• And finally, Itrust present their vision to Binary code instrumentation in section 1.7. 
 

1.2 SECURITY PROPERTIES DEFINITION 

 
Model based testing is based on the idea of specifying a functional model M of the system under test (SUT) 
which describes what the SUT is supposed to do. The SUT adheres to the model M if every execution trace 
of the model is admissible by the SUT. To test that SUT adheres to M, we generate execution traces (called 
tests) from M, and execute these on the SUT to see if they are admissible. Usually, M describes an infinite 
number of executions, so the tests have to be selected according to some coverage criteria, for instance that 
all transitions of the model (if the model is expressed as a state machine) must be covered by the selected 
executions. 
 
It is often convenient to specify the model using actions/events that are on a higher level of abstraction than 
the actions/events of the SUT. To test whether the SUT adheres to such a model, one has to transform the 
execution traces of the abstract model into execution traces of the SUT before the tests are executed. In 
addition, when testing security properties, it is often more convenient to specify a negative model M’ 
describing what SUT is not supposed to do than to specify a function model describing what SUT is 
supposed to do. To test that the SUT adheres to a negative model M’ using conventional model based 
testing techniques, M’ has to be inverted into a functional model M admitting exactly those execution traces 
that are not admitted by M’. 
 
In this section, we present a method for specifying security policies (we use the term policy instead of model 
to emphasise that we are focusing on security) using UML sequence diagrams describing what the SUT is 
not supposed to do. To take into account that actions/events of the policies may be on a higher level of 
abstraction than the action/events of the SUT, we also describe how UML sequence diagrams can be used 
in order to specify transformations from high-level events to low-level behaviour.   
 
In contrast to model based testing, monitoring is based on the idea of recording the execution of SUT at 
runtime, and checking whether the execution is admissible by the model M. Hence, the SUT adheres to the 
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model M if every execution of SUT is admissible by M. In this section, we will consider this notion of 
adherence. In particular, we describe an approach for transforming security policies expressed as UML 
sequence diagrams into state machines governing the behaviour of monitoring mechanisms. 
 
First, in section 1.2.1 and section 1.2.2, we describe the syntax and the semantics of UML sequence 
diagrams and UML state machines, respectively. Then, in section 1.2.4, we describe how sequence 
diagrams can be used to specify transformations from high-level actions to lower-level behaviour. Finally, in 
section 1.2.4 we describe a transformation from UML sequence diagrams into state machines that govern 
the behaviour of monitoring mechanisms.  
 
  

1.2.1 UML Sequence Diagrams 

In this section, we first present the syntax and semantics of UML sequence diagrams. Then, we define what 
it means for a system to adhere to a sequence diagram policy. 
 

1.2.1.1 Syntax 

 
We use the following syntactic categories to define the textual representation of sequence diagrams: 
 

 
 
We let Exp denote the set of all arithmetic, Boolean, and string expressions, and we let ex range over this 
set. We denote the empty expression by є. We let Val denote the set of all values, i.e., numerals, strings, 
and Booleans (t or f) and we let Var denote the set of all variables. Obviously, we have that Val ⊂ Exp 
and Var ⊂ Exp.  
 
Every sequence diagram is built by composing atoms or sub-diagrams. The atoms of a sequence diagram 
are the events, constraints, and the assignments. These constructs are presented in following section, while 
the syntax of sequence diagrams in general and their semantics is presented in the next sections. 
 
Events, constraints, assignments 
The atoms of a sequence diagram are the events, constraints, and the assignments. An event is a pair (k,m) 
of a kind k and a message m. An event of the form (!,m) represents a transmission of message m, whereas 
an event of the form (?,m) represents a reception of m. We let E denote the set of all events: 
 

 
 
where M denotes the set of all messages. 
 

On events, we define a kind function k._∈ E → {!, ?} and a message function m._∈ E → M: 

 

 
 

Messages are of the form (lt, lr, si) where lt represents the transmitter lifeline of the message, lr  represents 
the receiver lifeline of the message, and si represents the signal of the message. We let L denote the set of 
all lifelines, and SI denote the set of all signals. The set M of all messages is then defined by 
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On messages, we define a transmitter function tr._∈ M → L and a receiver function re._∈ M → L: 

 

We let the transmitter and receiver functions also range over events, tr._ , re._∈ E → L: 

 

We define a lifeline function l._∈ E → L that returns the lifeline of an event and a function l−1. _∈ E → L that 

returns the inverse lifeline of an event (i.e., the receiver of its message if its kind is transmit and the 
transmitter of its message if its kind is receive): 

 
A signal is a tuple (nm, ex1, . . . , exn) where nm denotes the signal name, and ex1, . . . , exn are the 
parameters of the signal. We usually write nm(ex1, . . . , exn) instead of (nm, ex1, . . . , exn). Formally, the set 
of all signals is defined 

 
where A* yields the set of all sequences over the elements in the set A. 
 
A signal may contain special so-called parameter variables that are bound to values upon the occurrence of 
the signal. Parameter variables are similar to free normal variables (normal variables that have not explicitly 
been assigned to a value). However, they differ in that parameter variables contained in a loop will be 
assigned to new values for each iteration of the loop. 
 
A parameter variable is a pair (vn, i) consisting of variable name vn and an index i (this is a natural number). 
When a sequence diagram is executed, the index of a parameter variable contained in a loop will be 
incremented by one for each iteration of the loop. This is to ensure that the parameter variable is given a 
new value when the loop is iterated. Hence, the index of a parameter variable is only used for bookkeeping 
purposes during execution, and it will never be explicitly specified in a graphical diagram. 
 
In a graphical sequence diagram, parameter variables are distinguished from normal variables by writing the 
parameter variables in boldface. The index of a parameter variable in a graphical sequence diagram is 
always initially assumed to be zero. 
 
The set of all parameter variables PVar is defined 

 
where VN is the set of all variable names and N is the set of all natural numbers. We assume that 

 
A constraint is an expression of the form 

 
where bx is a boolean expression and l is a lifeline. Intuitively, interactions occurring after a constraint in a 
diagram will only take place if and only if the boolean expression of the constraint evaluates to true. We 
denote the set of all constraints by C and we let c range over this set. 
 
An assignment is an expression of the form 

 

where x is a normal variable, i.e, x ∈ Var \ PVar, ex is an expression, and l is a lifeline. Intuitively, the 

assignment represents the binding of expression ex to variable x on lifeline l. We let A denote the set of all 
assignments and we let a range over this set. 
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We define the function l. ∈ A ∪∪∪∪ C → L which yields the lifeline of an assignment or constraint as follows 

 
 
We denote by El, Cl, and Al, the set of all events, constraints, and assignments with lifeline l, respectively, 
i.e., 

 
Diagrams 
In the previous section, we presented the atomic constructs of a sequence diagram. In this section, we 
present the syntax of sequence diagrams in general. 
 
Definition 1 (Sequence diagram) Let e, bx, l, x, and ex denote events, boolean expressions, lifelines, 
variables, and expressions, respectively. The set of all syntactically correct sequence diagram expressions D 
is defined by the following grammar: 
 

 
 
The base cases implies that any event (e), skip, constraint (constr(bx, l)), or assignment (assign(x, ex, l)) is a 
sequence diagram. Any other sequence diagram is constructed from the basic ones through the application 
of operators for negation (refuse (d)), iteration (loop<0..*> (d)), weak sequencing (d1 seq d2), choice (d1 alt d2), 
and parallel execution (d1 par d2). 
 

We define some functions over the syntax of diagrams. We let the function eca._∈ D → P(E ∪∪∪∪ C ∪∪∪∪ A) return 

all events, constraints, and assignments present in a diagram. The function is defined as follows 

 

Note that we henceforth let α denote an arbitrary event, constraint, or assignment, i.e., α ∈ E ∪ C ∪ A. 

The function ll._ ∈ D → P(L) returns all lifelines of a diagram: 

 
We denote by Dl, the set of all diagrams with only one lifeline l, i.e., 
 

 

The function msg._∈ D → P(M) returns all the messages of a diagram: 

 

The projection operator π_ (_ ) ∈ L×D → D that projects a diagram to a lifeline is defined 
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We let var ∈ (Exp ∪∪∪∪ M) → P(Var) be the function that yields the variables in an expression or the variables in 

the arguments of a signal of a message. We lift the function to diagrams as follows 

 
Syntactic constraints 
 
We impose some restrictions on the set of syntactically correct sequence diagrams D. We describe four rules 
which are taken from [48]. First, we assert that a given event should syntactically occur only once in a 
diagram. Second, if both transmitter and the receiver lifelines of a message are present in a diagram, then 
both the transmit event and the receive event of that message must be in the diagram. Third, if both the 
transmit event and the receive event of a message are present in a diagram, then they have to be inside the 
same argument of the same high level operator. The constraint means that in the graphical notion, 
messages are not allowed to cross the frame of a high level operator or the dividing line between the 
arguments of a high level operator. Fourth, the operator refuse is not allowed to be empty, i.e., to contain only 
the skip diagram. 
 
The four rules described above are formally defined in [48]. These rules ensure that the operational 
semantics is sound and complete with the denotational semantics of sequence diagrams as defined in [48]. 
In this report, we define ten additional rules and we say that a diagram d is well formed if it satisfies these: 
 
SD1 The variables of the lifelines of d are disjoint. 
 
SD2 All parameter variables of d have index 0. 
 
SD3 If m is a message in d, then the arguments of the signal of m must be distinct parameter variables only. 
 
SD4 The first atomic construct of each lifeline in d must be an assignment (not a constraint or an event). 
 
SD5 All parameter variables that occur inside a loop in d do not occur outside that loop. 
 
SD6 All loops in d must contain at least one event. 
 
SD7 No two events in d contain the same parameter variables. 
 
SD8 For each lifeline in d, each constraint c must be followed by an event e (not an assignment or a 
constraint). In addition, the parameter variables of c must be a subset of the parameter variables of e. 
 
SD9 For each lifeline in d, the parameter variables of an assignment must be a subset of parameter 
variables of each event that proceeds it on the lifeline. If the assignment has no proceeding events on the 
lifeline, then the assignment cannot contain parameter variables. 
 
SD10 All variables in d (except for the parameter variables) must explicitly be assigned to a value before 
they are used.  
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The purpose of the syntax constraints is to ensure that the sequence diagram can be correctly transformed 
into a state machine. 
 
Note that any graphical sequence diagram can be described by a textual diagram that satisfies conditions 
SD1 - SD4. 
 
To obtain a diagram that satisfies SD1 and SD2 we have to rename variables on each lifeline and set the 
index of all parameter variables to zero. To obtain a diagram that satisfies condition SD3 we convert 
arguments (that are not parameter variables) of the signal of an event into constraints proceeding the event. 
For instance, the diagram 

 
– which does not satisfy SD3 because ex might not be a parameter variable – can be converted into the 
diagram 

 
 
which does satisfy SD3. Here px=ex is a boolean expression that yields true if and only if px is equal to ex. 
 
If a sequence diagram d does not satisfy condition SD4, then a dummy assignment can be added to start of 
each lifeline in d that assigns some value to a variable that is not used in d. 
 

1.2.1.2 Semantics 

In this section, we define the operational semantics of UML sequence diagrams based on the semantics 
defined in [48]. The operational semantics tells us how a sequence diagram is executed step by step. It is 
defined as the combination of two labeled transition systems, called the execution system and the projection 
system. 
 
These two systems work together in such a way that for each step in the execution, the projection system 
updates the execution system by selecting an enabled event to execute and returning the state of the 
diagram after the execution of the event. 
 
The projection system 
The projection system is used for finding enabled events at each step of execution. The projection system 
(as well as the execution system) is formally described by a labeled transition system (LTS). 
 

 
To define the projection system, we make use of a notion of structural congruence which defines simple 
rules under which sequence diagrams should be regarded as equivalent. 
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The projection system is an LTS whose states are pairs ∏(L, d) consisting of a set of lifelines L and a 

diagram d. If the projection system has a transition from ∏(L, d) to ∏(L, d_) that is labeled by, say event e, 

then we understand that e is enabled in diagram d, and that d_ is obtained from d by removing event e. 
Whenever the high level construct alt, refuse, or loop is enabled in a diagram, the projection system will 
produce a so-called silent event that indicates the kind of construct that has been executed. For instance, 

each state of the form ∏(L, refuse (d)) has a transition to ∏(L, d) that is labeled by the silent event τrefuse. 

 
The set of lifelines L that appears in the states of the projection system is used to define the transition rules 
of the weak sequencing operator seq. The weak sequencing operator defines a partial order on the events in 
a diagram; events are ordered on each lifeline and ordered by causality, but all other ordering of events is 
arbitrary. Because of this, there may be enabled events in both the left and the right argument of a seq if 
there are lifelines present in the right argument of the operator that are not present in the left argument. The 
set of lifelines L is used to keep track of which lifelines are shared by the arguments of seq, and which 
lifelines only occur in the right argument (but not the left) of seq. 
 
The following definition of the projection system is based on [48]. 
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For more explanation of the rules of the projection system, the reader is referred to [48]. 
 
The projection system of Def. 4 is based on [48] where parameter variables are not taken into consideration. 
Recall that each parameter variable is bound to a new value upon the occurrence of the event it is contained 
in. This has the consequence that parameter variables occurring inside a loop are bound to new values for 
each iteration of the loop. Thus to modify the projection system of Def. 4 to take this into account, we only 
need to modify the rule for loop<0..*> (the last rule of Def. 4). To simulate the fact that parameter variables 
are bound to new values in each iteration of the loop, we let the projection system rename all parameter 
variables by incrementing their index for each iteration of the loop. Formally, we make use of the function 

ipv(_) ∈ PVar → PVar that increments the index of a parameter variable by one, i.e., 

 
The function is lifted to diagrams such that ipv(d) yields the diagram obtained from d by incrementing all its 
parameter variables by one. The revised projection system is now given by the following definition. 

 
 
Evaluation and data states 
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In order to define the operational semantics of sequence diagrams, we need to describe how the data states 
change throughout execution. In this section, we present some auxiliary functions that are needed for this 
purpose. 
 

An expression ex ∈ Exp is closed if var(ex) =∅. We let CExp denote the set of closed expressions, defined 

as: 

 

We assume the existence of a function eval ∈ CExp → Val∪∪∪∪{⊥} that evaluates any closed expression to its 

value. If an expression ex is not well formed or otherwise cannot be evaluated (e.g., because of division by 

zero), then eval(ex) =⊥. The evaluation function is lifted to signals, messages, and events such that eval(si), 

eval(m), eval(e) evaluate all expressions of signal si, message m, and event e, respectively. For example, we 
have that 

 

If an expression ex in signal si is not well formed, i.e., eval(ex) = ⊥, then eval(si) = ⊥. If e is an event (k,m) 

and si the signal of m, then we also have that eval(m) = ⊥ and eval(e) = ⊥. 

 

Let σ ∈ Var → Exp be a mapping from variables to expressions. We denote such a mapping σ = {x1→ ex1, 

x2→ ex2, . . . , xn→ exn} for distinct x1, x2, . . . , xn ∈ Var and for ex1, ex2, . . . , exn ∈ Exp. If ex1, ex2, . . . , exn ∈ 

Val we call it a data state. We let Σ denote the set of all mappings and denote the set of all data states. 

We use the same convention for the set of all events E, and denote by , the set of all events whose 
signals have only values as arguments. 
 

The empty mapping is denoted by ∅. Dom(σ) denotes the domain of σ, i.e., 

 
 
We let σ[x _→ ex] denote the mapping σ except that it maps x to ex, i.e., 

 
We generalize σ[x → ex] to σ[σ’ ] in the following way: 

 
The mapping is lifted to expressions such that σ(ex) yields the expression obtained from ex by 
simultaneously substituting the variables of ex with the expressions that these variables map to in σ. For 
example, we have that {y → 1, z → 2}(y + z) = 1 + 2. We furthermore lift σ to signals, messages, and events 
such that σ(si), σ(m), and σ(e) yields the signal, message, and event obtained from si, m, and e, 
respectively, by substituting the variables of their expressions according to σ. 
 
Execution system and trace semantics for sequence diagrams 
The execution system of the operational semantics tells us how to execute a sequence diagram in a step by 
step manner. Unlike the projection system, the execution system keeps track of the communication medium 
and data states in addition to the diagram state. Thus a state of the execution system is a triple consisting of 
a communication medium, diagram, and data state: 
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Here  denotes the set of total data states, i.e., the set of all data states σ satisfying 

 
We assume a communication model where each message has its own channel from the transmitter to the 
receiver, something that allows for message overtaking. The communication medium keeps track of 
messages that are sent between lifelines of a diagram, i.e., the messages of transmission events are put into 
the communication medium, while the messages of receive events are removed from the communication 
medium. 
 
It is only necessary to keep track of the communication between those lifelines that are present in a 
sequence diagram; messages received from the environment (i.e., from lifelines not present in a diagram) 
are always assumed to be enabled. 
 
The states of the communication medium are of the form (M,L) where M is a set of messages and L is a set 
of lifelines under consideration, i.e., the lifelines that are not part of the environment. The set of all 
communication medium states B is defined by 

 

We define two functions for manipulating the communication medium: add, rm ∈ B ×M → B. The function 

add(β,m) adds the message m to the communication medium β, while rm(β,m) removes the message m from 

the communication medium β. We also define the predicate ready ∈ B×M→ Bool that for a communication 

medium β and a message m yields true if β is in a state where it can deliver m, and false otherwise. 
Formally, we have 

 
We are now ready to define the execution system for sequence diagrams. 
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See [48] for more details on the rules of the execution system. 
 
The trace semantics of a sequence diagram is a pair consisting of a positive trace set and a negative trace 
set. The traces of a diagram d are obtained by recording the events occurring on the transitions of the 
execution system when executing d until it is reduced to a skip (which means that the diagram cannot be 
further executed). 
 
To distinguish negative from positive traces, we make use of the silent event τrefuse. That is, if a transition 
labeled by τrefuse is taken during execution, then this means that a negative trace is being recorded. 
Otherwise the trace is positive. 
 

 
 
Note that the projection function | takes a set A and a sequence s and yields the sequence s|A obtained from 
s by removing all elements not in A. Note also that A+ denotes the set of sequences of A with at least one 
element, i.e., A+ =def A* \ {<>}. 
 

1.2.1.3 Policy adherence for sequence diagrams 

In this section, we define what it means for a system to adhere to a policy expressed by a sequence 
diagram. 
 
A system (interpreted as a set of traces of events) adheres to a sequence diagram policy if none of the 
traces of the system has a negative trace of a lifeline in the sequence diagram as a sub-trace. A trace s = 

<e1, . . . , en> is a sub-trace of t, written , iff 
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Figure 1: Example of a state machine 

for some s1, . . . , sn+1 ∈ E*. See  [85] for a more precise definition. 

 
We first formally define adherence for diagrams consisting of a single lifeline. 
 

 
 
Note that the projection operator | is lifted to sets of sequences such that Φ|A yields the set obtained from Φ 

by projecting each sequence of Φ to A, i.e., Φ|A = {s|A | s ∈ Φ}. 

 
Adherence for general sequence diagrams (i.e., sequence diagrams that may contain more than one lifeline) 
is captured by the following definition. 
 

 
 

1.2.2 State Machines 

In this section, we define the syntax and the semantics of UML inspired state machines. We also define what 
it means for a system to adhere to a policy expressed as a state machine. 
 

1.2.2.1 Syntax 

As illustrated in Figure 1, the constructs which are used for specifying state machines are initial state, simple 
state, final state, transition, and action expression. 
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A state describes a period of time during the life of a state machine. The three kinds of states, initial state, 
simple states, and final states, are graphically represented by a black circle, a box with rounded edges, and 
a black circle encapsulated by another circle, respectively. 
 
A transition represents a move from one state to another. In the graphical diagrams, transitions are labeled 
by action expressions of the form 

 
 
Here the expression nm.si where nm is a state machine name and si is a signal is called an event trigger. 
The expression [bx] where bx is a boolean expression is called a guard, and ef is called an effect. Intuitively, 
the action should be understood as follows: when signal si is received from a state machine with name nm 
and the boolean expression bx evaluates to true, then the effect ef is executed. An effect is a sequence of 
assignments and/or an output expression of the form nm.si representing the transmission of signal si to the 
state machine with name nm. 
 
We will henceforth consider action expressions that contain at most one event. In our formal representation 
of state machines, we will therefore use action expressions of the form (e, bx, sa) where e is an input or 
output event, bx is a boolean expression (the guard) and sa is a sequence of assignments of the form ((x1, 
ex1), . . . , (xn, exn)). Formally, the set of all action expressions w.r.t. to the set of events E is defined by 
 

 
 
Note that the event is optional in an action. An action without an event is of the form (_, bx, sa). We will 

henceforth use  to denote an arbitrary event or an empty expression, i.e.,  denotes a member of E ∪∪∪∪ 

{є}. 
 
The alphabet of a state machine is a set of events containing signals whose arguments are distinct 
parameter variables. We require that all events in the alphabet are distinct when two events e and e’ are 
considered equal if they have the same name and the same number of arguments. 
 
To make this more precise, we let Epv denote the set of all events whose signals contain distinct parameter 
variables only, i.e., 

 
Note that the formula is written in a style suggested by Lamport [84]. Here, the arguments of a conjunction 

may be written as an aligned list where ∧ is the first symbol before each argument. A similar convention is 

used for disjunctions. Also, indentation is sometimes used instead of parentheses. 
 

We write if events e and e’ have the same kind, transmitter, and receiver and their signals have the 
same name and the same numbers of arguments, i.e., 

 
We are now ready to define the syntax of state machines precisely. 
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We define the functions for obtaining the alphabet, states, transitions, initial state, and final states of a state 
machine: 

 
Syntax constraints 
We impose one restriction on the set of syntactically correct action expressions ActE; the parameter 
variables of the guard and the assignment sequence must be a subset of the parameter variables of the 
event (if the event is present in the action): 

 

 
 
where pvar yields the set of all parameter variables in an expression, assignment sequence, or an event. 
 
We define four syntax rules for state machines, and we say that a state machine SM is well formed if it 
satisfies these rules: 
 
SM1 The initial state of SM has zero ingoing transitions. 
 
SM2 The initial state of SM has exactly one outgoing transition, and the action expression of this transition 
does not contain an event or a guard. 
 
SM3 Each transition of SM (except the initial transition) is labeled by an action expression that contains an 
event. 
 
SM4 All variables (except parameter variables) in SM must be explicitly assigned to a value before they are 
used. 
 

1.2.2.2 Semantics 

In this section, we define the semantics of state machines. First we define the execution graph of a state 
machine, then we define the traces obtained by executing a state machine. 
 
The execution graph of a state machine SM is an LTS whose states are pairs [q, σ] where q is a state of SM 
and σ is a data state. The transitions of the execution graph are defined in terms of the transitions of SM. 
That is, if SM has a transition from q to q’ that is labeled by (e, bx, sa) and the signal of e has no arguments, 
then the execution graph has a transition from [q, σ] to [q’, σ’] that is labeled by e provided that the guard bx 
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is evaluated to true under state σ. Here, the data state σ’ is equal to σ except that the variables of sa are 
assigned to new values as specified by sa. To make this precise, we define the function  

 
which takes a data state σ and an assignment sequence sa and yields a new updated data state. Formally, 

 

If the signal of event e contains arguments, i.e., parameter variables, then these variables are bound the new 
arbitrary values. In this case, the guard bx and the event e are evaluated under some data state σ[σ’’] where 
σ’’ is an arbitrary mapping whose domain equals the parameter variables of e. 

 
The trace semantics of a state machine is the set of sequences obtained by recording the events occurring 
in each path from the initial state to a final state of the state machine. 

 

1.2.2.3 Policy adherence for state machines 

In this section, we define what it means for a system to adhere to a policy expressed as a state machine. We 
also define what it means for a system to adhere to a set of state machines. 
 
Intuitively, a system S adheres to a state machine policy SM if all execution traces of S (when restricted to 
the alphabet of SM) are described by SM. This is formally captured by the following definition. 

 
Adherence for a set of state machines is precisely captured by the following definition. 
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1.2.3 Specifying Transformations Using Sequence Diagrams 

In this section, we show how transformations can be expressed in terms of sequence diagrams. 

1.2.3.1 Transformation specifications 

A transformation specification is a set of mapping rules. A mapping rule is a pair (dp, dp’) consisting of a left 
hand side sequence diagram pattern dp and a right hand side sequence diagram pattern dp’. A sequence 
diagram pattern is a sequence diagram whose atoms (events, constraints, and assignments) may contain 
meta variables. 
 
We let MVar denote the set of all meta variables and we let mv range over this set. Events that may contain 
meta variables are called event patterns. The set EP of all event patterns is defined 

 
Here SIP denotes the set of all signal patterns. This set is defined by 

 
where ExpP is an expression that may contain meta variables (in addition to normal variables and parameter 
variables). 
 
A constraint pattern is an expression of the form 

 
where bxp is a boolean expression that may contain meta variables. We let CP denote all constraint 
patterns. 
 
An assignment pattern is an expression of the form 

 
where exp is an expression that may contain meta variables. We let AP denote the set of all assignment 
patterns. 

 
A sequence diagram pattern is either a meta variable (mv), an event pattern (ep), a constraint pattern (cp), 
an assignment pattern (ap), or the composition of one or more diagram patterns. 

1.2.3.2 Transformations 

In this section, we define the function induced by a transformation specification. Intuitively, when a 
transformation specification ts is applied to a sequence diagram d, all fragments of d that match a left hand 
side pattern of a mapping rule in ts are replaced by the right hand side pattern of the mapping rule. 
 

Matching is defined in terms of a substitution sub ∈ MVar → (D ∪ Exp) that replaces meta variables by 

diagrams or expressions. Any substitution sub is lifted to diagram patterns such that sub(dp) yields the 
diagram obtained from dp by simultaneously replacing all meta variables in dp by diagrams or expressions 
according to sub. The set of all substitution is denoted by Sub. 
 
A diagram pattern dp matches a diagram d if there is a substitution sub such that 

 
We say that the domain of a mapping rule (dp, dp’), written Dom((dp, dp’)), is the set of all diagrams that can 
be matched by its left hand side pattern, i.e., 
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To ensure that transformation specifications induce functional transformations, we require that the mapping 
rules of a transformation specification must have disjoint domains, i.e., each transformation specification ts 
must satisfy the following constraint 

 
 

 
 

1.2.4 From sequence diagrams to state machines 

In this section, we define the transformation from sequence diagrams to state machines. In general, the 
transformation of a sequence diagram yields a set of state machines, i.e., one state machine for each lifeline 
in the sequence diagram. 
 
The main requirement to the transformation is that is should be adherence preserving. 

 
We first, in Sect. 1.2.4.1, define the transformation from a sequence diagram with only one lifeline to a state  
machine. Then, in Sect.1.2.4.2, we define the transformation from (general) sequence diagrams to state 
machine sets. We show that this transformation is adherence preserving for policies that are composed of 
sub-policies with disjoint sets of variables. 
 

1.2.4.1 From single lifeline diagrams to state machines 

The transformation from a single lifeline diagram d to a state machine has two phases. In phase 1, the 
sequence diagram d is transformed into a state machine SM whose trace semantics equals the negative 
trace set of [[ d ]]. In phase 2, SM is inverted into the state machine SM’ whose semantics is the set of all 
traces that do not have a trace of SM as a sub-trace. 
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Phase 1  
In phase 1, the sequence diagram d is transformed into a state machine SM that describes the negative 
traces of d. The state machine SM corresponds to the projection system induced by d. That is, if the 

projection system has a transition , then SM has a transition where 

q and q’ correspond to ∏(ll.d, d) and ∏(ll.d, d_), respectively. However, some transitions of the projection 

system are truncated. In particular, 
 

• all silent events are removed, e.g., if , then SM has a 

transition ; 
• constraints are concatenated with succeeding events and assignments concatenated with preceding 

events, e.g., if  , then 

SM has a transition   
To define this precisely, we introduce the notion of experiment relation. 
 

 

 
 

To obtain correct action expressions for transitions, we define the function  for 

converting a sequence of constraints into a guard and the function for 
converting a sequence of sequence diagram assignments into a sequence of state machine assignments. 
More precisely, these functions are defined as follows 

 
where  yields the conjunction of a sequence of Boolean expressions. For the 
empty sequence, conj yields true, i.e., conj(()) = t. We use the function conj instead of expressing the 
conjunction directly because we have not defined the notation for Boolean expressions in BExp since this is 
not important in this report. 
 
To distinguish negative from positive traces, we make use of the τrefuse silent event. That is, any execution 
that involves a τrefuse represents a negative behavior. Otherwise the execution represents positive behavior. 
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Since the goal of phase 1 is to construct a state machine SM that describes the negative traces of a 
sequence diagram, each final state of SM should accept a negative trace. To distinguish these final states 
from those that accept positive traces, we let each state of SM have one of two modes: pos and neg. If a 
state has mode pos, then this means that a positive trace is being recorded when this state is entered. If a 
state has mode neg, then a negative trace is being recorded when the state is entered. 
 
Even though we shall restrict attention to well formed sequence diagrams, we cannot in general let the 
alphabet of the state machine be equal to the set of all events in the sequence diagram, because this set 
may not satisfy the requirement that all events in the alphabet must be distinct up to argument renaming (see 

Def. 10). To ensure that a correct alphabet is constructed, we make use of the function ψ ∈ PVar → PVar 

that renames parameter variables. We lift the function to signals with parameter variables as arguments as 
follows: 

 
 
To ensure that the renaming function does not change the meaning of a signal, we require that ψ does not 
rename two distinct parameter variables of a signal into the same parameter variable, i.e., we require 

 
We lift ψ to expressions, events, and actions in the obvious way. Furthermore, we lift ψ to event sets and 
transition sets as follows: 

 
We are now ready to define the transformation of phase 1. 
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The predicate Last (in Def. 21) ensures that the longest possible sequence of assignments is selected. For 
instance, the condition ensures that the following sequence diagram 
 

 
 

is transformed into the state machine W’ in Figure 2, and not the state machine W of Figure 2. Note that the 
projection system consisting of those states that can be reached from the sequence diagram is illustrated at 
the top of Figure 2. 
 
Each state of the state machine constructed in phase 1 consists of a set of diagrams Q rather than a single 
diagram which is used by the projection system. This is to reduce nondeterminism in the constructed state 
machine. To see how this works, consider the LTS labeled A illustrated on the left hand side of Figure 3. If 
we convert this into a state machine by removing silent events without merging states, we would obtain the 
state machine B shown in the middle of Figure 3 (note that we have omitted to specify the modes of states 
in the figure). Clearly, this state machine is nondeterministic. However, if we merge states 3 and 4, we obtain 
the state machine C (on the right hand side of Figure 3) which is deterministic. 

 
Phase 2 
In phase 2, the state machine obtained from phase 1 is inverted into a state machine SM’ whose semantics 
is the set of all traces that do not have a trace of SM as a sub-trace. This notion of inversion is captured by 
the following definition. 
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Figure 2: State machines W and W’ are obtained by transformation without and with condition Last, 
respectively 

 
 

 

 

 

Figure 3: Machines A and B are nondeterministic while C is deterministic. 

To explain how the transformation of phase 2 works, we first define the transformation for state machines 
whose transitions each contain exactly one event (whose signal has zero arguments) and no guards or 
assignments. 
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The rule for generating transitions ensures that previously visited states are “recorded”. To see why this is 
needed, consider the state machine P on the left hand side of Figure 4. The set of traces described by it is 
 

 
 

The inversion of P is the state machine P’ shown on the right hand side of Figure 4, i.e., ph2_(P) = P’. All 
states of P’ are final, thus we have omitted to specify the final states in the figure. The trace semantics of P’ is 
the set 

 
 

Initially, both a and b are enabled. However, if a has occurred, then only b is enabled (if we assume that the 
alphabet of the state machine is {a, b}). Similarly if b has occurred, then only a is enabled. If both a and b 

have occurred, then no events are enabled. The final states of P are used to find those events that 

should not be enabled in P’. For instance, consider the transition in P’. Here the state 1 is 
“collected” because we need to make sure that b is not enabled after b has occurred in state {1,2}. Since 1 is 
collected, the occurrence of b in state {1,2} leads to state {1,2,3} and b is not enabled in this state because 
the occurrence of b in state 3 leads to a final state in P. 
 
The following lemma shows that the transformation of phase 2 is correct for simple state machines, i.e., state 
machines with no guards or assignments. 

 

Figure 4: State machine P and its inversion P’ 
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Figure 5: State machine Q and its inversion Q’ 

‘  
The transformation of phase 2 is more complicated for state machines whose transitions contain guards. To 
see this, consider the state machine Q depicted on the left hand side of Figure 5. Inverting this state machine 
according to the transformation of Def. 23 would not work because the transformation does not take the 
guards into consideration. A correct inversion of Q is given by the state machine Q’ depicted on the right 
hand side of Figure 5. Here we see that the transitions 

 
of state machine Q (where bx1 denotes i <= 10 and bx2 denotes i = 10) have been converted into the 
transitions 

 
In general, if a state machine SM has transitions 

 

where q1, . . . , qn are not final states, and its inversion SM’ has a state {q}, then for each set of indexes Ix ⊆ 

{1, . . ., n}, the inversion SM’ has a transition 

 

where bx is the conjunction of those guards bxi that have an index in Ix (i.e., i ∈ Ix), bx_ is the negation of the 

disjunction of the guards that do not have an index in Ix, sa is the concatenated sequence of assignment 
sequences sai that have an index in Ix, and Q is the set of states qi that have an index in Ix. 
 

Note that for the special case where Ix = ∅, then bx should be equal to true. In addition, for the special case 

where Ix = {1, . . ., n}, then bx_ should be equal to true. 
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To make this more precise, we make use of the function  (where N denotes the set 
of all natural numbers, and A denotes the set of all sequences), that for a set of indexes Ix and a sequence 
s, yields the sequence obtained from s by removing all elements whose index is not in Ix, e.g., 

 
In addition, we let list be a function that turns a set into a list, set be a function that turns a list into a set 
(according to some total ordering on the elements in the set), and flatten be the function that flattens a 
nested sequence, e.g., 
 

 
 
We also need functions on boolean expressions. As before, we let the function conj yield the conjunction of a 

sequence of boolean expressions. We also define the function  which yields the 
disjunction of a sequence of boolean expressions. For the empty sequence, disj yields false, i.e., disj(()) = f. 

Finally, we let  be the function that yields the negation of a boolean expression. 
 
We now revise the definition of the transformation of phase 2 in light of the above discussion. 
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The transformation ph2’’ does not always yield the correct inversion of a state machine. For instance, 
consider the state machine W depicted on the left hand side of Figure 6. It describes two traces: one trace 
consisting of 9 occurrences of a, and one trace consisting of 9 occurrences of b. Applying the phase 2 
transformation ph2’’ to W yields the state machine W’ depicted on the right hand side of Figure 6. Note that 
we have not depicted final states (since all states are final) or transitions whose guards always evaluate to 
false and that redundancy in the boolean expressions of the guards have been removed, e.g., i ≤ 10 and true 

is written i ≤ 10. 
 
The state machine W’ rejects traces consisting of 10 or more occurrences of a or b. For instance, the trace t 
consisting of 5 occurrences of a and 5 occurrences of b is rejected by the state machine W’. However, no 
trace of W is a sub-trace of t. Hence, W’ is not a correct inversion of W. The reason for this is that the two 
possible executions of W, resulting from the branch in state 2, share the variable i, i.e., the variable is used in 
a condition/guard of one execution and assigned to a value in another execution. In the example, this causes 
W’ not to be a correct inversion of W. 
 
In general, to ensure that ph2’’ yields the correction inversion SM_ of a state machine SM, we must require 
that all guards encountered when executing SM_ must evaluate to the same values as the ”corresponding” 
guards encountered when executing SM. We say that a transformation is side effect free for SM if this 
requirement is satisfied. This is precisely captured by the following definition. 

 

Figure 6: State machine W and its inversion 
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Figure 7: State machine W, its incorrect inversion ph2 (W) = W’, and its correct inversion W’’ 

 

 

 
 
 

 
 
It is possible to define an alternative version of the transformation of phase 2 for which the side effect free 
condition is less restrictive. In particular, we observe that ph2’’ may generate unnecessary guards and 
assignment sequences for transitions corresponding to inconclusive behavior. As an example, consider the 
state machine W in Figure 7. It describes the trace <a, b>. The result of applying transformation ph2’’ to W is 
depicted by state machine W’ in Fig.17 (i.e., ph2’’(W) = W’). Note that we have not illustrated final states 
(since all states are final) or transitions whose guards always evaluate to false, and that boolean expressions 
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have been simplified. The state machine W’ is not a correct inversion of W since b is enabled after a has 
occurred 10 times. The problem is that the reflexive transition 

 
in W’ describing inconclusive behavior, contains the (unnecessary) assignment i = i + 1 since W has the 
transition 

 
which has been previously visited to reach the state {2, 3}. 
 
A solution to the problem of the current example, is the let each state of the inverted state machine record all 
transitions that are previously visited in order to reach that state. The previously visited transitions can then 
be disregarded when generating reflexive transitions corresponding to inconclusive behavior. 
 
State machine W” in Figure 7 shows how this would work in the current example. Here V1, V2, V3 are sets of 
previously visited transitions of W defined by 

 

 

Figure 8: State machine W and its (incorrect) inversion W’ and (correct) inversion W’’ 

 
Now, when generating transitions for a in state ({2, 3}, V3), we disregard the set V3 of previously visited 
transitions. Thus we get 

 
and by definition of inversion (Def. 22) we have that W’’ is a correct inversion of W. 
 
The solution proposed above may not work for state machines that contain loops. For instance, consider the 
state machine W of Figure 8. It describes the trace containing 9 occurrences of a followed by b. In other 
words, the policy states that b is not allowed to occur after a has occurred 9 times. If we use the 
transformation ph2’’ to invert W and record previously visited transitions as described above, we get state 
machine W’ of Figure 8. Here we have that 

 
The state machine W’ is not a correct inversion of W since it allows the occurrence of b after a has occurred 

more than 9 times. In this case, adding the transition   into the set of previously 
visited transitions, and thereby disregarding its transitions, is incorrect, because the transition is in a loop and 
may therefore be visited several times. 
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A solution to the problem is to remove the transitions of a loop from the set of visited transitions each time 
the loop is iterated. To achieve this, we can remove the outgoing transitions of each state that is entered 
from the set of previously visited transitions. In the current example, we would then obtain the state machine 
W” of Figure 8 which is a correct inversion of W. 
 
We are now ready to give the final definition of the transformation of phase 2. 

 

 

 
 
The transformation ph2 will correctly invert the state machine examples of Figure 4, Figure 5, Figure 7, and 
Figure 8. 
 



 

 
 
 

Concepts for Model-Based Security 
Testing 

 
Deliverable ID: D2.WP2 

 

 

Page    :  37 of 134 
 

 

Version:  1.0 
Date     :  26.09.2011 

 

Status : Final 
Confid : Public 

 

 

 Copyright DIAMONDS Consortium 

However, ph2 does not work for the state machine of Figure 6, where the variable i is shared in the sense 
that it is used in a condition/guard of one execution and assigned to a value in another execution. We make 
this precise in the following definition. 

 

 
 
We conjecture that if a state machine SM does not have shared variables in the sense of (Def. 27), then ph2 
is side effect free for SM (Def. 25). By Corollary 1, this means ph2 will yield the correct inversion of any state 
machine that does not have shared variables. 
 
In practice, the condition that a state machine policy must not have shared variables, means that when we 
compose several policies, then these policies cannot have the same variable names. For instance, consider 
again the state machine W of Figure 6. This state machine may be seen as the composition of the two 
policies: (1) more than 9 occurrences of a is not allowed, and (2) more than 9 occurrences of (2) b is not 
allowed. However, since both policies use the variable i to count the number of occurrences of a or b, the 
condition of no shared variables is violated. 
 
Note that it is feasible to automatically check whether a state machine has no shared variables because the 
condition is formulated in terms of the transitions of a state machine as opposed to the transitions of the 
execution graph. 
 
Together, the transformation of phase 1 and phase 2 is adherence preserving when the condition of phase 2 
is satisfied. 
 

 
 

1.2.4.2 From general sequence diagrams to state machines 

In this section, we define the transformation that takes a (general) sequence diagram and yields a set of 
state machines. 
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The transformation from sequence diagrams to state machine sets is adherence preserving when the 
condition of phase 2 is satisfied. 

 

1.3 NETWORK INSTRUMENTATION AND DATA EXTRACTION 

 
To understand how a system works, there must be a way to collect data from it. When discussing information 
networks, the venerable OSI model remains as the most commonly used way of describing network 
architectures. In the OSI model, network protocols are split into seven layers often denoted L1-L7, with each 
layer communicating only with the layers below and above it. From an implementation and traffic analysis 
point of view this is completely inadequate, but it serves as a starting point for discussion. 
 
Data collection can be approached from both ends of the layered stack. The applications on Layer 7 (L7) are 
ultimately what define what is transmitted on the network. The applications typically interface with the 
network through well-defined operating system services. The applications then serialize memory 
representations of the necessary objects, and pass them on to the operating system for transmission. The 
receiver side application receives the serialized representation, and transforms it to its own internal memory 
representation.  If both applications share an identical understanding on the data, the communication has 
been successful. 
 
The downside of application level monitoring is that implementing instrumentation has to be done separately 
for each application, and thus requires a significant amount of resources. Also, there may be problems on 
the lower levels that are impossible to diagnose in the application, which sees only symptoms of the 
underlying problem. 
 
If the bottom-up approach is taken, and data is collected at the lowest level, it obviously contains all the 
information that is necessary to understand what is being transmitted. Barring storage costs, the monetary 
cost to collect the data is very low. Interpreting the data, however, requires more effort. In some cases it may 
even be necessary to reproduce a complete implementation of the entire application stack to be able to 
understand the data. An example of this is application level encryption. Without reassembling and decrypting 
the encrypted packets analysis is limited to finding that some communication occurred between two hosts, 
and some correlation can be found in relation to the amount of data transferred, as well as timing. Decryption 
also requires infrastructure for retrieving and inserting the necessary keys. 

 

1.3.1 Physical Level (L1) 

 
At the lowest level, the bit stream of data that is transferred through the network is encoded into the physical 
realm: electrical impulses, light, radio signals etc. The range of network technologies is wide and varied, 
making detailed analysis of what can be collected outside the scope of this work. Furthermore, as the 
physical phenomena must be converted into digital form for analysis, data collection is typically done at 
Layer 2 (or higher), where this has already been done. 



 

 
 
 

Concepts for Model-Based Security 
Testing 

 
Deliverable ID: D2.WP2 

 

 

Page    :  39 of 134 
 

 

Version:  1.0 
Date     :  26.09.2011 

 

Status : Final 
Confid : Public 

 

 

 Copyright DIAMONDS Consortium 

 
There are several useful attributes that can only be measured from the physical level, such as bit error rate 
and signal strength. This information is often made available by L2 analyzers, which mitigates the need for 
L1 analysis. 
 
There are a few areas, where data collection at the physical level is warranted. The most natural area is in 
low-level conformance testing of network equipment. In wireless networks, there are also interesting 
characteristics that can be inferred from the physical level. Even though equipment from different vendors all 
implements the same standards, there are measurable differences in the RF spectrum they produce. This 
can be used for device fingerprinting, which has some value in, e.g., information security purposes. 
 

1.3.2 Data Link (L2) 

 
The most straightforward and prevalent source of data in a network are packet captures. Collecting data at 
this level also has the lowest monetary cost, due to non-intrusiveness and implementation simplicity. It 
requires the traffic to be monitored to be available to the monitoring host, which can be done in a passive 
manner using, e.g., monitor port functionality available in nearly all Ethernet switches, or commercially 
available passive taps. 
 
Packet capturing differs from normal networking in one crucial way. It may involve traffic that it neither 
originating nor destined to the capturing host. Typically such packets are dropped by the network interface 
card (NIC), which have a small (32 or 64 entries is typical) programmable address filter. Packets that are not 
destined to an address matched by the filters are dropped, making host processing unnecessary.  In order 
for all packets to be captured, the NIC can be placed into promiscuous mode, which disables the filter 
entirely. 
 
Instead, filtering is often done by small virtual machine –based application, such as the Berkeley Packet 
Filter (BPF) used by the widely used libpcap library. These applications are loaded into kernel space by the 
monitoring application, and each packet is run through the registered filters. Only matching packets are then 
copied to the monitoring application for further processing. 
 
The downside to packet level analysis is understanding the data. Even a simple operation, such as 
searching for a string from the traffic, can be overly complex, as the string may have been divided between 
two separate packets. Tools for reconstructing the flows, such as Wireshark and tcpflow, are widely 
available, but still they are limited in what they can accomplish, as fully understanding the data ultimately 
requires a full implementation of the overlying protocol stack. 
 

1.3.3 Transport Layer (L3) 

 
An alternative for collecting application traffic is from the transport layer, which provides for a reconstructed 
view to the data flows generated by networked applications, typically a TCP or UDP connection between two 
given IP address - port combinations. There are two main approaches, transport layer proxies and flow-level 
analysis. 

1.3.3.1 Transport layer proxies 

 
While the traffic flows can be reconstructed from the original packets on the wire, this can be a laborious 
task. When reconstructing, e.g., TCP connections, the packets can arrive out-of-order, be fragmented or 
retransmitted, or even be lost, as they arrive at the monitoring station.  Reconstruction fundamentally 
requires a full, stateful implementation of the original protocol, which ideally covers all corner-cases in the 
protocol specification. 
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Alternatively, the monitoring point can operate as a man in the middle that terminates the original connection, 
and originates a new connection to the original destination host (transparent proxy). This can be 
advantageous, as it simplifies collection, and also makes it possible to modify the data as it passes through, 
if required for robustness testing of networked software. The major downside of this approach is that it is not 
passive, and may change the semantics of the original traffic. 
 

1.3.3.2 Flow-based traffic collection 

 
An alternative to capturing packet payload is only capturing summarized information of the traffic. The 
dominant method for this is NetFlow, originally defined by Cisco. NetFlow was designed for capturing 
summarized network data from routers, taking into account the limited resources available on a router. 
 
In NetFlow, traffic is represented as an unidirectional sequence of packets with an identical 7-tuple (source 
and destination IP address, source and destination ports and IP protocol, Ingress physical port and IP Type 
of Services). As routers classify packets based on these attributes as a normal part of their functionality, 
implementing NetFlow is a matter of maintaining a small flow cache that is updated for each packet 
incrementing packet and data transmitted counts.  To conserve limited resources, this cache is regularly 
flushed to an external collector. 
 
There are several different versions of the NetFlow defined, with varying levels of detail provided in the 
record format.  In practice, two versions are currently in wide use, versions 5 and 9.  The most recent version 
of NetFlow, version 9, is an extensible, template-based format, which currently defines 89 field types (e.g. 
MPLS labels, IPv6 addresses and AS numbers associated with the data). The router can be configured to 
emit NetFlow records with a specific set of fields, as specified by the user. 
 
While the detail available in NetFlow is limited, it has the benefit of being very compact, even for large 
enterprise networks storing months of data is feasible. The detail level is enough for some intrusion detection 
type of analysis, and can be used for post-mortem analysis of intrusions even months after the intrusion has 
happened. 
 

1.4 ADVANCED NETWORK TRAFFIC ANALYSIS 

 
Unlike active monitoring [1][58], passive monitoring does not inject traffic in the network or modify the traffic 
that is being transmitted in the network. This is crucial because any injected message/packet may modify the 
environment, causing problems or crashes of the tested protocol or service. Thus, the passive monitoring 
approach seems to be the ideal means for directly verifying an implementation in natural operational run-time 
conditions. In addition, with this approach, the tests can be run during the whole protocol life time as 
opposed to active testing campaigns that are run during a limited period of time.  
 
This kind of passive monitoring can be very relevant in many fields and for different purposes (e.g. 
functional, security, performance). In this section, we present some security monitoring concepts for 
advanced network traffic monitoring based on “MMT-Security properties”

1
. 

1.4.1 MMT-Security Properties 

1.4.1.1 Basics 

 

                                                      
1
 MMT-Security properties are used as input to Montimage Monitoring Tool (MMT) described in WP3.D2 section 5.1. 
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The main objective of MMT-Security properties is to formally specify security goals and attack behaviors 
related to the application or protocol under test. The “MMT-Security property” model is inspired from LTL 
logic [23] and can refer to two types of properties: “Security rules” and “Attacks” described as follows: 

• A Security rule describes the expected behavior of the application or protocol under-test whether it is 
functional or security oriented. The non-respect of the MMT-Security property indicates an abnormal 
behavior, e.g. the access to a specific service must always be preceded by an authentication phase. 

• An Attack describes a malicious behavior whether it is an attack model, a vulnerability or a 
misbehavior. Here, the respect of the MMT-Security property indicates the detection of an abnormal 
behavior that might indicate the occurrence of an attack, e.g. a big number of requests from the 
same user in a limited period of time can be considered as a behavioral attack. 

Notice that the events that we take into account within MMT-Security properties are related to observable 
system/network communications. In the case of a telecommunication network, they refer to traffic packets 
and flows. In other contexts, they can relate to any action that can be stored in a server/database/software 
log file. In the following, we formally present the concepts of MMT-Security properties in the context of 
telecommunication networks [48]. The main definition of an MMT-Security property is provided by definition 
number 11. The other definitions allow understanding the basics of the used model.  
 
Definition 1 (Trace): A collected trace during a period of time is a set of ordered captured packets. 

• A trace T = U
n

i 0=

pi where n is the number of the captured packets, p1 is the first packet captured in the 

trace and pn is the last one. 

• Each packet pi has a rank ri that corresponds to its position in the trace T. 

• ∀ pi ∈ T, pi= U
mi

j 1=

fi,j where fi,j is a field of the packet pi and mi is the number of fields of the packet pi. Each 

field fi,j of the packet pi has a value vi,j . 

• ∀ pi ∈ T, ∃fi,j ∈ pi / fi,j= ti where ti is the timestamp when pi was captured. 

• ∀ ri, rj where ri is rank of pi and rj is rank of pj, if ri > rj then ti > tj. 

 
Definition 2 (Value function Φ): Let T be a collected trace of n packets, F the set of fields of all the packets 
pi of the trace T and V the domain of values. V = R ∪ S ∪ NULL where S is a finite set of strings and R is the 
real domain values. We define the function: Φ: T × F → V as the function that allows providing the value of a 
field in a specific packet of the trace T: 

• Φ (pi, fm,n) = vi,n if fm,n ∈ pi and 

• Φ (pi, fm,n) = NULL if fm,n /∈ pi 

 
An MMT-Security property is an IF-THEN property. It allows expressing specific constraints on network 
events. Each event is a set of conditions on some of the field values of the exchanged packets.  
 
Definition 3 (Conditions): Conditions are predicates on packet fields’ values. Let pi and pi′ be two captured 
packets, V be the domain of values, fi,j be a field of the packet pi, fi′,j′ be a field of pi′ and x ∈ V . Let “op” be an 
operator element of OR∪OS where OR={≤ , ≥, =, ≠, ∈, etc.} and OS={equal, not equal, contain, not contain, 
etc.}.

2
  

 

                                                      
2
 OR is the classical set of operators that can be applied on real numbers in the domain R. 

OS is the classical set of operators that can be applied on strings of the domain S. 
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Two types of conditions can be defined: cs (simple condition) and cc (complex condition). 

• cs ::= Φ (pi, fi,j) op x 

We say that the packet pi satisfies the simple condition “cs” if and only if the predicate “vi,j op x” is true. 

• cc ::= Φ (pi, fi,j) op Φ (pi′ , fi′,j′) 

We say that packet pi satisfies the complex condition “cc” if and only if the predicate “vi,j op vi′,j′” is true. 
 
Definition 4 (Basic event): An event ej is a set of conditions on relevant fields of captured packets.  

ej = U
mj

k 1=

cj,k where mj is the number of conditions (simple and/or complex). 

Let pi be a packet and ej an event with mj conditions and cj,k the k
th
 condition of ej. A packet pi satisfies an 

event ej if and only if ∀ k ∈ [1, mj], cj,k is true. 
 
Definition 5 (Abstention of having an event): If e is an event, then ¬e is also an event. ¬e is satisfied if no 
packet that satisfies the event e occurs in the collected trace. 
 
Definition 6 (Repetition of an event): If e is an event and n ∈ N

*
, then n × e is a complex event. n × e is 

satisfied if n packets satisfying the event e occur in the collected trace. 
 
Definition 7 (Complex events: Successive events): Let n ∈ N

*
, t ∈ R

+*
 and e1 and e2 be two basic events.  

(e1; e2)n,t is a complex event. [p1, p2] satisfies (e1; e2)n,t ⇔ 

• p1 satisfies e1 and 

• p2 satisfies e2 and 

• time(p1) < time(p2) < time(p1)+t and 

• rank(p1) < rank(p2) < rank(p1)+n 

In other words, [p1, p2] satisfies (e1; e2)n,t iff p2 follows p1 and they are separated by at most n packets and t 
units of time. 
 
Definition 8 (Complex events: AND): Let n ∈ N

*
, t∈ R

+
* and e1 and e2 two basic events. (e1 ∧ e2)n,t is a 

complex event. [p1, p2] satisfies (e1 ∧ e2)n,t. if [p1, p2] satisfies (e1; e2)n,t or (e2; e1)n,t. 
 
Intuitively, p1 and p2 satisfy (e1 ∧ e2)n,t iff p2 and p1 are separated by at most n packets and t units of time. 
 
Definition 9 (complex events: OR): Let n ∈ N*, t∈R

+
* and e1 and e2 two basic events. (e1 ∨ e2)n,t is a 

complex event. p1 satisfies (e1 ∨  e2)n,t ⇔ p1 satisfies e1 or p1 satisfies e2. 
 
Definition 10 (MMT-Security property): Let W∈{BEFORE, AFTER}, n∈N*, t∈R

+
* and e1 and e2 two events 

(basic or not). An MMT-security property is an IF-THEN expression that describes constraints on network 
events captured in a trace T = {p1, ..., pm′}. It has the following syntax:  

e1  → tnW ,,
e2 

This property expresses that if the event e1 is satisfied (by one or several packets pi, i∈{1,...,m}), then event 
e2 must be satisfied (by a set of packets pj, j∈{1,...,m}) before or after (depending on the W value) at most n 
packets and t units of time. e1 is called triggering context and e2 is called clause verdict. 
 
The MMT-Security property model allows expressing complex security properties derived from security best 
practises and from domain-specific security requirements. These MMT-Security properties are described 
using an XML format to make interpretation easier for both humans and software. The XML structure of 
MMT-Security properties is presented in WP3.D2 document in section 5.1 [78]. The processing of MMT-
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Security properties is performed by the MMT tool that allows the analysis of collected communication traces 
in order to detect potential vulnerabilities and security flaws. 

1.4.1.2 Examples 

1.4.1.2.1 ARP poisoning 

Address Resolution Protocol (ARP) is a telecommunications protocol used for resolution of network layer 
addresses into link layer addresses, a critical function in multiple-access networks. ARP was defined by RFC 
826 in 1982 [12]. ARP poisoning (RFC5227) is a technique used to attack a local-area network (LAN). ARP 
poisoning may allow an attacker to intercept data frames on a LAN, modify the traffic, or stop the traffic 
altogether. 
 

 

Figure 9: IP duplication 

 
Attack model: Following an ARP request (who has), a node receives more than one reply with different MAC 
addresses then IP duplication is detected or potentially an ARP poisoning attack. 
 
This attack behavior can be specified as follows: 
 

 (e1 ; e2)-1,1  → − 1,1,AFTER
e3 

Where: 

• Event 1 (e1): reception of ARP request message 

• Event 2 (e2): reception of ARP reply message (src mac2) 

• Event 3 (e3): reception of ARP reply message with (scr mac3) != (src mac2) 
 
This security attack is specified in XML

3
 as follows: 

 
<property value="THEN" delay_max="1" property_id="1" type_property="ATTACK"  
          description="IPv4 address conflict detection (RFC5227). Possible ARP poisoning."> 
    <operator value="THEN" delay_max="1"> 
      <event value="COMPUTE" event_id="1"  
             description="ARP who has request" 
             boolean_expression="(ARP.OPCODE == 1)"/> 

                                                      
3
 The syntax and structure of MMT-Security properties are given in D2.WP3 deliverable in section 5.1 
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      <event value="COMPUTE" event_id="2"  
             description="ARP reply MAC address" 
             boolean_expression="((ARP.OPCODE == 2)&amp;&amp; 
             (ARP.SRC_PROTO == ARP.DST_PROTO.1))"/> 
    </operator> 
    <event value="COMPUTE" event_id="3"  
           description="ARP reply but with different MAC address" 
           boolean_expression="(((ARP.OPCODE == 2)&amp;&amp; 
           (ARP.SRC_PROTO == ARP.DST_PROTO.1))&amp;&amp; 
           (ARP.SRC_HARD == ARP.SRC_HARD.2))"/> 
</property> 

1.4.1.2.2 Thales radio protocols 

Ad hoc networks are more exposed to security threats than traditional networks due to their mobility and 
open architecture characteristics. In addition, any dysfunction due to badly configured nodes can severely 
affect the network as all nodes participate in the routing task. For these reasons, it is important to check the 
validity of ad hoc protocols, to verify whether the running implementation conforms to its security 
specification and to detect security flows in the network. In the context of the DIAMONDS project, Thales 
proposed a case study dealing with radio protocols described in D1.W1 deliverable section 2.4 [71]. Based 
on a risk analysis of their protocols, they specified a set of security rules that the system under test needs to 
respect. In this section, we present one example related to RLC_CL_UNIT_DATA_ACK messages. 
 
Threat: Deny of service by flooding of RLC_CL_UNIT_DATA_ACK messages 
Security rule: A message RLC_CL_UNIT_DATA_ACK must be preceded with a message 
RLC_CL_UNIT_DATA_REQ that previously asked for an acknowledgement (R == 00010000) (correlation 
with the USER_TRANSACTION_ID) 
 
This security rule can be specified as follows: 
 

 e1  → − 1,1,BEFORE
e2 

Where: 

• Event 1 (e1): RLC_CL_UNIT_DATA_ACK message 

• Event 2 (e2): RLC_CL_UNIT_DATA_REQ message that asked for acknowledgement 
 

This security rule is specified using XML
4
 as follows: 

 
<property value="THEN" delay_min="-1" property_id="1" type_property="SECURITY_RULE"  
          description="A message RLC_CL_UNIT_DATA_ACK must be preceded with a message 
          RLC_CL_UNIT_DATA_REQ that asked for acknowledgement (R == 1) (correlation with the 
          USER_TRANSACTION_ID)"> 
   <event value="COMPUTE" event_id="1"  
          description="RLC_CL_UNIT_DATA_ACK message" 
          boolean_expression="((BASE.PROTO == 5152)&amp;&amp; 
          ((BASE.TIME_SLOT == BASE.TIME_SLOT.2)&amp;&amp; 
          (MSG_RLC_CL_UNIT_DATA_ACK.USER_TRANSACTION_ID ==   
           MSG_RLC_CL_UNIT_DATA_REQ.USER_TRANSACTION_ID.2)))"/> 
   <event value="COMPUTE" event_id="2"  
          description="RLC_CL_UNIT_DATA_REQ message that asked for acknowledgement" 
          boolean_expression="((BASE.PROTO == 1056)&amp;&amp; 
          (MSG_RLC_CL_UNIT_DATA_REQ.QOS_R == 128))"/> 
</property> 

                                                      
4
 The syntax and structure of MMT-Security properties are given in D2.WP3 deliverable in section 5.1 
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1.4.2 Deep Packet/Flow Inspection 

 
Deep Packet Inspection (DPI) is a networking technology process based on examining the header and non-
header content of a packet by a system that is not an endpoint in the communication. When a packet arrives, 
each layer is fully parsed and inspected. DPI enables diverse operations such as advanced network 
management, improvement of network security functions, and monitoring of customer data traffic in order to, 
for instance, mediate its speed. The use of DPI makes it possible to find, identify, classify packets with 
specific data or code payloads that conventional packet filtering, which examines only packet headers, 
cannot detect. Deep Flow Inspection (DFI), which is an evolution of DPI, is a way to identify and classify 
traffic flows in a network. 
 
In the context of DIAMONDS, DPI and DFI are used to help detect and tackle harmful traffic and security 
threats; and, to throttle or block undesired behaviours. We define a set of security properties for network 
traffic, at both control and user planes, to catch interesting events. Indeed, based on the defined security 
properties, we register the attributes to be extracted from the inspected packets and flows. These attributes 
are of three types: 

• Real attributes: They can be directly extracted from the inspected packet. They correspond to a 
protocol field value. 

• Virtual attributes: They are calculated within a flow. Packets from the same flow are grouped and 
security/performance indicators are calculated (e.g. delays, jitter, packet loss rate) and made 
available to security analysis engine. 

• Meta attributes: These attributes are linked to each packet to describe capture information. The 
capture time of each packet. The timestamp attribute is the main meta-attribute in the current version 
of Montimage’s monitoring technique. 

 
When finding an interesting event, we report this information (e.g. give values of attributes) to higher level 
monitoring system for further treatment. Besides, legal aspects need to be considered including storing the 
information required by law and protecting the privacy of citizens and organisations. If one needs to handle 
personal information on individuals, a number of legal obligations to protect that information need to be 
respected. As a legally sanctioned official access to private communications, Lawful Interception is a security 
process in which a service provider or network operator collects and provides law enforcement officials with 
intercepted communications of private individuals or organizations. 

1.4.3 Network Traffic Analysis Based on MMT-Security Properties 

 
Security monitoring based on MMT-Security properties is performed with the assistance of a network sniffer 
to capture network traffic. The analysis can be done: 

• Offline: The analysis is based on an already captured network trace in pcap format.  

• Online: In this case, passive monitoring does not cause any traffic overhead in the network as active 
testing would. However, some processing performance issues could exist since huge amounts of 
collected data have to be processed while they are being collected. 

 
Network traffic analysis for security follows four steps: 
 

• The definition of the monitoring architecture: This architecture depends on the nature of the system 
under test and its deployment in the network. Capture engines (i.e. probes) are placed at relevant 
elements or links in the network to obtain real time visibility of the traffic to be analysed. In the case 
of a distributed architecture, local trace files are merged (based on event timestamps) to obtain a 
broader visibility of what is going on in the network. 

• The description of the system security goals and attacks based on the MMT-security property format: 
The description specifies the security rules that the studied system has to respect and/or the security 
attacks that it has to avoid. This task can be done by an expert of the system under test that 
understands its security requirements in detail. 
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• The security analysis: Based on the security property specification, the passive tester performs 
security analysis on the captured trace file to deduce verdicts for each property. 

• Reaction: In case of a fail verdict, some reactions have to be undertaken in the network, based on 
previously defined security strategies, e.g. to block any malicious behaviour. 

 
Passive monitoring can be coupled with DIAMONDS active testing and fuzzing techniques. It can be applied 
as part of the testing chain, e.g. after the execution of some security-oriented test cases, in order to collect 
network traffic and analyse it based on previously defined MMT-Security properties. Passive monitoring is 
complementary to DIAMONDS security testing techniques. 
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1.5 HORN LOGIC BASED SECURITY ANALYSIS – A DATA CENTRIC APPROACH 

 
Passive testing or runtime monitoring approaches are usually propositional in nature, i.e. they represent 
inputs and outputs as part of a (usually) finite set of symbols or values accounting for the control part of the 
communication, allowing techniques from regular language theory to be used. Since modern, particularly 
security based protocols depend heavily on data exchange, some works extend the propositional approach 
by using a concept as “parameterized propositions”[65], where propositions are augmented with parameters 
(variables) of different domains. Such extension allows to successfully test simple data relations, however, 
as the number of parameters increases, it does it in detriment of succinctness and readability of formulas. It 
is the premise of the approach depicted in this section where the main functionalities of the protocol are 
contained in the data and not in the control part, a data-centric approach, i.e. a definition of security 
properties from the basis of data fields and their expected relations, provides an effective solution for 
passively testing network protocols. In order to clearly understand the herein proposed approach and 
experiment it on a simple example, let us first give couple of definitions. 
 

1.5.1 Protocol Messages and Traces 

1.5.1.1 Messages in network protocols 

 
A message in a communication protocol is, using the most general view, a collection of data fields belonging 
to multiple domains. Data fields in messages, are usually either atomic, i.e. the information they provide 
comes from using their value as a unit (e.g. timestamp, name, port), or compound, i.e. they are composed of 
multiple elements (e.g. a URI sip:name@domain.org). Due to this, we also divide the types of possible 
domains in atomic, defined as sets of numeric or string values, or compound, as follows. 
 
Definition 1. A compound value v of length k > 0, is defined by the set of pairs v = { (li, vi) | li ∈ L ∧ vi  ∈ Di  ∪ {ε}, 

i = 1… k}, where L = {l1,…, lk} is a predefined set of labels and Di are data domains, not necessarily disjoint. 
 
In a compound value, in each element (l, v), the label l represents the functionality of the piece of data 

contained in v. The length of each compound value is fixed, but undefined values can be allowed by using ε 

(null value). A compound domain is then the set of all values with the same set of labels and domains. 
 
Definition 2. Given L a set of labels of length k and D1, …, Dk a group of data domains (not necessarily 
disjoint), with k > 0. A compound domain C is identified by the tuple < L, D1, … , Dk >. Each element v ∈ C is a 
compound value of length k with labels li ∈ L and corresponding vi ∈ Di ∪{ε}, for i = 1 … k. 
 
Definition 3. Let C =< L, D1, … , Dk > be a compound domain. Then a function δC : C × L → Ui=1..k Di∪{ε} is 

defined, where given a compound value v ∈ C and label li, then δC(v, li) = vi where (li, vi) is a pair in v. 
 
Notice that, Di being domains, they can also be either atomic or compound, allowing for recursive structures 
to be defined. Finally, given a network protocol P, a compound domain MP can generally be defined, where 
the set of labels and element domains derive from the message format defined in the protocol specification. 
A message of a protocol P is any element m ∈ MP, that is, a message is any value which is valid with respect 
to the protocol specification. 
 
Example 1. A possible message for the SIP protocol, specified using the previous definition is: 
 

m = {(method, ‘INVITE’), (status, ε), 
 (from, ‘john@b.org’), (to; ‘paul@b.org’), 
 (cseq, {(num, 10), (method, ‘INVITE’)}) } 
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representing an INVITE request (a call request) from john@b.org to paul@b.org. Notice that the value 
associated to the label cseq is also a compound value, {(num, 10), (method, ‘INVITE’)}. 
 
Accessing data inside messages is a basic requirement for the current approach, and nested calls to the 

function δ of a domain, as in δcseq(δM(m, cseq), method) to obtain the value for the label method inside the 
value associated with cseq in the example. We will use in the following, the notation v.l1.l2…ln (selector 
variable) to represent that call as for instance m.cseq.method for the example above. 
 

1.5.1.2 Execution traces 

 
A trace is a sequence of messages of the same domain (i.e. using the same protocol) containing the 
interactions of an entity of a network, called the point of observation (P.O), with one or more peers during an 
indeterminate period of time (the life of the P.O). Such definition makes a trace potentially infinite, however, 
testing of properties can only occur in a finite segment of the trace. A definition of trace and trace segment is 
provided below. 
 
Definition 5. Given the domain of messages MP for a protocol P. A trace is a sequence Γ = m1,m2, … of 
potentially infinite length, where mi ∈ MP. 
 

Definition 6. Given a trace Γ = m1, m2, …, a trace segment is any finite sub-sequence of Γ. The order 

relations {<, >} are defined in a trace, where for m, m’ ∈ ρ, m<m’, pos(m) < pos(m’) and m > m’ , pos(m) > 

pos(m’) and pos(m) = i, the position of m in the trace (i ∈ {1, … , len(ρ)}). 
 
As testing can only be performed in trace segments, trace will be used to refer to a trace segment unless 
explicitly stated. 
 

1.5.2 Horn Logic Syntax and Semantics 

 
A syntax based on Horn clauses is used to express the security properties. The syntax is closely related to 
that of the query language Datalog, described in [1], for deductive databases, however, extended to allow for 
message variables and temporal relations. 
Formulas in this logic are expressed by the use of common terms and atoms, where: 
A term t ::= c | x | x.l.l…l  where c is a constant in some domain (e.g. a message in a trace), x is 
a variable, l represents a label, and x:l:l…l is called a selector variable. 
 
 

An atom A ::= p(t,…,t) | t=t | t≠t where p is a predicate of label p and arity k (i.e. there are k term 
arguments for predicate p). 
 
In this logic, relations between terms and atoms are stated by the definition of clauses. A clause is an 

expression of the form A0 ← A1 ∧ … ∧ An, where A0, called the head of the clause, has the form A0 = 
p(t*1,…,t*k), where t*i are a restriction on terms for the head of the clause (t* = c | x). The expression A1 

∧…∧An, is called the body of the clause, where Ai are atoms.  
Finally a formula is defined by the following BNF: 

φ ::= A1 ∧…∧An  |  φ→φ | ∀x φ | ∀y>x φ | ∀y<x φ | ∃x φ | ∃y>x φ | ∃y<x φ  

Where 

• The → operator indicates causality in a formula, and should be read as “if-then” relation. 

k 
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• The ∃ and ∀ quantifiers, are equivalent to its counterparts in predicate logic. However, as it will be 

seen on the semantics, here they only apply to messages in the trace. Then, for a trace ρ, ∀x is 

equivalent to  ∀x ∈ ρ and ∀y<x is equivalent to ∀y ∈ ρ, y < x, with ‘<’ indicating the order relation 
from Definition 6. These types of quantifiers are called trace quantifiers. 

 

 

The semantics used in this approach is related to the traditional Apt–Van Emdem–Kowalsky semantics for 
logic programs [70], however some changes are introduced to deal with messages and trace temporal 
quantifiers. We begin by introducing the concepts of substitutions (as defined in [59]). 
 

Definition 7. A substitution is a finite set of bindings θ = {x1/t1, … , xk/tk} where each ti is a term and each xi is 

a variable such that xi ≠ ti and xi ≠ xj if i ≠ j. 

The application xθ of a substitution θ to a variable x is defined by t if x/t ∈ θ and x otherwise. Its application to 

a selector variable x.l1…lk is defined as t.l1…lk if x/t ∈ θ with t a compound value and t.l1…lk otherwise. 
 

Given K = {C1, … ,Cp} a set of clauses and ρ = m1, …, mn  a trace. An interpretation is any function I 

mapping an expression E that can be formed with elements (clauses, atoms, terms) of K and terms from ρ to 

one element of {⊥, T}. It is said that E is true in I if I(E) = T. 
The semantics of formulas under a particular interpretation I, is given by the following rules. 

• The expression t1 = t2 is true, iff t1 equals t2 (they are the same term). 

• The expression t1 ≠ t2 is true, iff t1 is not equal to t2 (they are not the same term). 

• An atom A = p(c1, … , ck) is true, iff A ∈ I. 

• An atom A is true, iff every instance of A is true in I. 

• The expression A1 ∧ … ∧ An, where Ai are atoms, is true, iff every Ai is true in I. 

• A clause C: A0 ← B is true, iff every instance of C is true in I. 

• A set of clauses K = {C1, … , Cp} is true, iff every clause Ci is true in I. 
 

An interpretation is called a model for a clause set K ={C1, …, Cp} and a trace ρ if every Ci ∈ K is true in I. A 

formula φ is true for a set K and a trace ρ (true in K,ρ for short), if it is true in every model of K,ρ. The 

semantics of formulas is then defined as follows. Let K be a clause set, ρ a trace for a protocol and M a 

model, the operator M̂  defines the semantics of formulas. 
 

 
 
The semantics for trace quantifiers requires first the introduction of a new truth value ‘?’ (inconclusive) 

indicating that no definite response can be provided. The semantics of quantifiers ∀ and ∃ is defined as 
follows: 

 
 

Since ρ is a finite segment of an infinite execution, it is not possible to declare a ‘T’ result for ∀xφ, since we 

do not know if φ may become ‘⊥’ after the end of ρ. Similarly, for ∃xφ, it is unknown whether φ becomes true 
in the future. This issue is further detailed on the technical report [31]. The rest of the quantifiers are detailed 

in the following, where x is assumed to be bound as a message previously obtained by ∀x or ∃x. 
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The semantics for ∀y<x and ∃y<x is equivalent to the last two formulas, exchanging > by <. 
 

1.5.3 Security Properties Evaluation Algorithm on Execution Traces 

 

In the previous section, a two part semantic was defined for the logic: one for of formulas of type A1  ∧ … ∧ 
An (atomic formulas), and a second one for formulas including trace quantifiers. Thus an evaluation 
algorithm is required for security properties with a two part methodology: 1) resolution of atomic formulas, 
where a variant of the classical SLD (Selective Linear Definite-clause) resolution algorithm [11] can be 
performed. 2) Evaluation of quantifiers and declaration of verdicts for a given trace.  
Since the SLD resolution algorithm is widely covered in the literature, we will not detail the application and 
will only focus on the evaluation of formulas in traces. 
Two rules are used to report the results of the evaluation of a property in a trace: 

1. Given a formula ∀xφ, an independent result should be declared for every value of x. 

2. Given a formula ∃xφ, a result should be given only if it exist some values of x in the trace that makes 
the property true. Any other values for x are irrelevant for the resolution. 

An algorithm can be constructed using recursion and the details of the different cases in the evaluation are 

provided as follows, where eval(φ,θ,ρ) returns the evaluation of the formula φ using substitution θ into trace ρ. 
 

• Evaluation of a formula ∀xφ provides an independent solution with the evaluation of φ for every 
possible value of x in the trace. The result is provided by the following formula. 

 

 
 

• Evaluation of a formula ∃x looks for a ‘T’ result to the evaluation of φ. 

 
• Evaluation of a formula ∀y>xφ assumes that a binding for x to a message in the trace already exists 

in θ and provides a solution for every evaluation of φ after the position of that message. Depending 
on the implementation, an error should occur if no previous binding for x exists. 

 
• Evaluation of a formula ∃y>x looks for a ‘T’ result to the evaluation of φ after the position of x in the 

substitution θ. 
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• Evaluation of ∀y<xφ and ∃y<xφ are analogous to their equivalents with ‘>’ just replacing every 
occurrence of ‘>’ by ‘<’. 

• Evaluation of a formula φ→Ψ first will evaluate φ and if the result is ‘T’, then evaluate Ψ. If the latter 
also has the value ‘T’, then the result of evaluation is ‘T’. Any new bindings defined from the 

evaluation of φ must be used in the evaluation of Ψ. If the evaluation of φ is ‘⊥’, then the result is 

ignored, since ⊥→Ψ is not an interesting result because it is independent of the value of Ψ. 

 
• Evaluation of a formula A1 ∧ … ∧ Ak, where Ai are atoms, returns the value obtained using SLD-

resolution. 

 
 
The previous rules define every possible case for the algorithm evaluating functional, non-functional or 
security properties on an execution trace. 
 

1.5.4 Examples and Experiments 

 
The Session Initiation Protocol (SIP) [65] is an application-layer protocol that relies on request and response 
messages for communication, and it is an essential part for communication within the IMS (IP Multimedia 
Subsystem) framework. Messages contain a header which provides session, service and routing information, 
as well as an (optional) body part to complement or extend the header information. Several RFCs have been 
defined to extend the protocol with to allow messaging, event publishing, notification and security. These 
extensions are used by services of the IMS such as the Presence service [4] and the Push-to-talk Over 
Cellular (PoC) service [9]. 
For the experiments, traces for an ad-hoc PoC session establishment were obtained from a production IMS 
implementation, provided by Alcatel-Lucent France and extracted from the interfaces of the IMS core, 
containing exchange between the client and the IMS presence and PoC services. Tests were performed 
using a prototype implementation of the concepts presented in the current work. The implementation, 
defined properties and network traces can be found in http://www-public.int-evry.fr/~lalanne/datamon.html. 
Properties, extracted from the requirements for the PoC and Presence service were evaluated in the traces 
and the approach showed successful in determining the satisfaction of such properties. Three of the 
properties tested are provided in the following, where the structure of SIP messages used is described by 
the following table. 
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1. For every request there must be a response. This property can be used for a monitoring purpose, 
in order to draw further conclusions from the results. Due to the issues relative to testing on finite 
traces for infinite executions, false results can never be given for this context. However, inconclusive 
results can be returned and conclusions may require further analysis of the results (for instance if the 
same type of message is always without a response). The property evaluated is as follows: 
 

 
 

where nonProvisional(x) accepts all non-provisional responses (non-final responses, with 

status≥200) to requests with method different than ACK, which does not require a response. The 
predicate responds(y; x) accepts all pairs of messages (y; x) where y is a response to x and is 
defined by: 

 
2. No session can be initiated without a previous registration. This property can be used to test 

that only users successfully registered with the SIP Core can initiate a PoC session (or a SIP call, 
depending on the service). It is defined using our syntax as follows: 
 

 
 

3. Subscription to events and notifications. The presence service is a system to disseminate 
presence information and relies on SIP for communication. There, a user (the watcher) can 
subscribe to be notified of another user's (the presentity) presence information, this works by using 
the SIP messages SUBSCRIBE, PUBLISH and NOTIFY for subscription, update and notification 
respectively. It is desirable then to test, that whenever there is a subscription, a notification MUST 
occur upon an update event. This can be tested with the following formula: 
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where subscribe, update and notify hold on SUBSCRIBE, PUBLISH and NOTIFY events 
respectively. Notice that the values of the variables watcher, user and event may not have a value at 
the beginning of the evaluation, in that case their value is set by the evaluation of the subscribe 
clause, as shown in the following formula, where `=' works as comparison or assignment depending 
on whether the variables have a previous binding. 
 

  
 
The results of the experiments are shown in Table below. A predominance of inconclusive results were 
found. In the second property, for example, inconclusive results indicate that a session initialization was 
found on the trace, but no registration procedure was captured. If prior to testing, the assumption is made, 
due to the trace capturing methodology, that a session registration should be available, then such 
inconclusive results are telling and indicate a possible fault in the implementation. Unfortunately, such 
assumption could not be made in our case.  
 

 

1.6 MACHINE LEARNING 

1.6.1 Introduction 

Machine learning approaches are used widely in different areas of science and information security is one of 
those areas. Machine learning gives a good set of tools in 1) identifying limited amount of behaviours defined 
by measurement combinations or 2) detecting abnormal behaviour when normal behaviour of the system is 
well defined. 
Different machine learning techniques are many, with a textbook

5
 on artificial intelligence listing over ten with 

dozens of modifications available for each approach. Each technique has its intrinsic set of strengths and 
weaknesses. The approaches have enjoyed a storm of successes reported in scientific papers. Especially K-
means clustering and SVM approaches have seen great amount of usage. 

1.6.2 Challenges 

In their paper
6
 discussing problems of machine learning in intrusion detection approaches Sommer and 

Paxson discuss in length multiple problems that machine learning application faces when used in real world 
network situation. The authors specifically identify the following list of difficulties that the machine learning 
approach needs to account for in real world network monitoring application, but many of them can be 
generalised to different information security problems. 

                                                      
5
 S. Russel and P. Norvig, “Artificial Intelligence, A Modern Approach”, 2

nd
 Edition, Prentice Hall, 2003 

6
 R. Sommer and V. Paxson, “Outside the Closed World: On Using Machine Learning for Network Intrusion Detection”, 

Proc. IEEE Symposium on Security and Privacy, May 2010 
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• Outlier detection 

• High cost of errors 

• Semantic gap 

• Diversity of network traffic 

• Difficulities with evaluation 

1.6.2.1 Outlier detection 

Machine-learning algorithms excel at finding similarities, while detection of abnormal activity proves more 
difficult. Machine learning classification needs typically to be trained to detect the required classes by using 
samples which describe measurements from all classes. This training material is not available for novel 
attacks, or novel variations of new attacks. 
The problem is well described in a paper

7
 by Witten et. al, where the authors argued that by specifying only 

positive examples and adopting a standing assumption that the rest are negative is called the closed world 
assumption. Real world problems rarely involve closed worlds and information security even less so. 

1.6.2.2 High cost of errors 

The relative cost of errors in information security systems, especially intrusion detection, has limited their real 
world applicability. False positive matches require expensive analysis by a security analyst and false 
negatives can cause massive costs from administration work only (e.g. purging malware from systems). 

1.6.2.3 Semantic gap 

When using a machine learning system to spot suspicious activity for a human operator, semantic gap 
becomes a problem. The question “What does the operator need to do?” is not answered by machine 
learning algorithms, which just provide a classification or alert. Providing the input metrics for the analyst can 
also be confusing and counterproductive. As machine learning systems can easily incorporate tens of input 
metrics, it is important to provide the data in a careful manner, for the operator to be able to interpret what 
has happened. Visualisation and linking the data become important, as well as understanding the 
environment. This is especially problematic, when many false positives eat away at the attention of the 
operator, who can be easily overwhelmed by the events and data. 

1.6.2.4 Diversity of network traffic 

The diversity of network traffic in unrestricted environment often surprises people without first hand 
experience on managing different networks. There can be an immense variety in even the basic 
characteristics making network behaviour highly unpredictable. This makes the notion of normality elusive, 
which in turn makes detection of security events unreliable, as normal variance can easily trigger false 
alarms. 
Outside network security the same problems are likely when the systems behaviour is hard to predict (e.g. 
analysis of unknown programs maliciousness). This needs to be kept in mind when thinking of using 
machine learning approach for detection interesting behaviour. 

1.6.2.5 Difficulties with evaluation 

The data, which the machine learning algorithm is trained and tested can be problematic. Especially network 
traffic lacks public data, which could be used for realistic training and testing of such systems. This causes 
the researchers often to make their own training and evaluation samples, which can be highly simplified. Any 
results that the system gains do not often apply in “live” environment. 
The information security machine learning system is also located in a competitive setting. The defenders and 
attackers are locked in invisible arms-race to create better defences and attacks to penetrate those. This can 
easily reduce the effectiveness of any widely available system. 

                                                      
7
 I. H. Witten and E. Frank, “Data Mining: Practical Machine Learning Tools and Techniques” 2

nd
 edition, Morgan 

Kaufmann, 2005 
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1.6.3 Research 

Great amount of papers can be found using any major scientific collections on machine learning and 
information security. This part will discuss only few in order to indicate the wide range of problems within 
information security, that the machine learning approaches have applied to. 
“Machine Learning Techniques for Passive Network Inventory”

8
, by Francois et. al. describe a network 

fingerprinting technique taking advantage of SVM algorithm to classify devices.  
“Neural Network Techniques for Proactive Password Checking”

9
, by Ciaramella et. al describe techniques to 

use neural networks for enforcing password strength requirements. 
“A Plan for Spam”

10
 by Graham describes a machine learning algorithm used for spam email detection and 

filtering. This has been one of the few machine learning applications in information security area which has 
seen wide usage. 
“Evolutionary Neural Networks for Anomaly Detection Based on the Behaviour of a Program”

11
 by Han et. al 

describe host based intrusion detection system which gives impressive accuracy for detection of attacks 
against the system. The impressive results however have not led to wide scale adaptation of their detection 
scheme. 
Many other papers can be found tackling different aspects of information security in conferences and 
journals around the world, with new papers joining the ranks each month. Machine learning has much to 
give, when applied correctly.  
 
 

1.7 BINARY CODE INSTRUMENTATION 

1.7.1 Introduction 

Binary instrumentation deals with the capability to monitor the operation of software. Its main aim is to 
observe the dynamic program behaviour without affecting its operation. In order to reach this goal it adds 
specific instructions to monitor and log the activities and interacts with the kernel to observe the activity of a 
program, as system calls execution, networks or sockets operation, file system access... 
This approach is required during a security test to clearly identify the origin of an anomaly or a crash. All 
these probes improve the detection of functions generating errors and provide information about their 
arguments and their specific contexts. 
This specific approach of software engineering can be divided in two parts: Tracing and debugging. The 
concepts of these two parts are described in the followings paragraphs. 

1.7.2 Tracing 

Tracing involves either the activation of some probes or the injection of some codes, in order to monitor 
program execution.  

                                                      
8
 J. Francois, H. Abdelnur, R. State and O. Festor: “Machine Learning Techniques for Passive Network Inventory”, IEEE 

Transactions on Network and Service Management, December 2010 
9
 A. Ciaramella, P. D’Arco, A. De Santis, C. Galdi and R. Tagliaferri: “Neural Network Techniques for Proactive Password 

Checking”, IEEE Transactions on Dependable and Secure Computing, 2006 
10

 P. Graham: “A Plan for Spam”, Hackers & Painters, O’Reilly, 2004 
11

 SJ. Han and SB. Cho: “Evolutionary Neural Networks for Anomaly Detection Based on the Behaviour of a Program”, 
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybenetics, June 2005 
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Figure 10: Tracing schema 

In this part of the document, we deal on the one hand with different types of probes such as “system call 
monitoring”, “open files monitoring”, “registry monitoring”, etc…, and on the other hand with code injection 
(statically and dynamically). 

1.7.2.1 System call monitoring 

When a program makes a request to the kernel, it uses a system call. A system call is used when a program 
wants to interact with hardware, execute another process, communicate with kernel services, etc. System 
calls provide the interface between a process and the operating system. Monitoring these calls is interesting 
to understand what the program does. 
An operating system natively allows monitoring system calls. Indeed, it ensures/enables to easily check open 
files, open sockets or binary execution. For example, we can use strace on Linux to list system calls made 

by the program: 

open(".", O_RDONLY|O_NONBLOCK|O_LARGEFILE|O_DIRECTORY|O_CLOEXEC) = 3 

fstat64(3, {st_mode=S_IFDIR|0755, st_size=4096, ...}) = 0 

fcntl64(3, F_GETFD)                     = 0x1 (flags FD_CLOEXEC) 

getdents64(3, /* 18 entries */, 4096)   = 496 

getdents64(3, /* 0 entries */, 4096)    = 0 

close(3)                                = 0 

fstat64(1, {st_mode=S_IFIFO|0600, st_size=0, ...}) = 0 

mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 

0xb7f2c000 

write(1, "autofs\nbackups\ncache\nflexlm\ngames"..., 86autofsA 

Figure 11: Example of strace output on Linux 
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This approach may identify bugs as permission denied on open() function during a fuzzing test. The same 

kind of tools exists on Windows, for example, API Monitor: 

 

Figure 12: API Monitor interface on Windows 

On UNIX, we can use a specific kernel API (Application Programming Interface) to monitor system calls 
directly through the kernel. On Solaris or FreeBSD, it is called DTrace and on Linux SystemTap. The 
advantage of this technique compared with the previous tools, is that it is not simply a tool, but it is a 
complete scripting language. It is much more flexible and allows more functionalities. For example, the 
following DTrace’s one-line script displays files opened by a process: 

# Files opened by process, 

dtrace -n 'syscall::open*:entry { printf("%s %s",execname,copyinstr(arg0)); }' 

Figure 13: DTrace example 

The following SystemTap example allows printing system calls count for each process, one by one: 

global syscalls 

 

probe begin { 

  print ("Collecting data... Type Ctrl-C to exit and display results\n") 

} 

 

probe syscall.* { 

  syscalls[execname()]++ 

} 

 

probe end { 

  printf ("%-10s %-s\n", "#SysCalls", "Process Name") 

  foreach (proc in syscalls-) 

    printf("%-10d %-s\n", syscalls[proc], proc) 

} 

Figure 14: SystemTrap example 
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1.7.2.2 Registry monitoring 

The Windows Registry is a hierarchical database that stores configuration settings and options on Microsoft 
Windows operating systems. It is interesting to monitor this activity because it permits to analyse what the 
program does. 
We can use RegMon from Sysinternals toolbox to monitor Windows Registry activities: 

 

Figure 15 : RegMon interface on Windows 

1.7.2.3 Network monitoring 

When a program wants to communicate through networks, it needs to open a network socket. It is a 
bidirectional inter-process communication flow across an Internet Protocal-based computer network. Socket 
manipulation is an API provided by the operating system. Monitoring these sockets allow the engineer to 
visualise network connections established or initialised by the program. During a fuzzing test, it allows 
monitoring the correct behaviour of these calls. 
On Linux and Windows, we can use netstat to monitor all open/established/closed/waiting sockets. We 

can also use system calls monitoring method as described in section 1.7.2.1, but there exist some specific 
tools as TCPView from Sysinternals:  
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Figure 16: TCPView output on Windows 

1.7.2.4 Open files monitoring 

It might be necessary to monitor files and disk operations. On Windows operating systems, Sysinternals 
provides a lot of tools to monitor this, for example AccessChk, DiskExt, DiskMon… 
These tools can be used to analyse if no disk or file access modification is performed during the fuzzing test. 
We can also use system calls monitoring to specifically check disk or file system activities. 

1.7.2.5 Code injection monitoring 

Code injection is a technique used by hackers to run arbitrary code through a running process. For example, 
on Windows operating systems, DLL injection is a technique to add our own libraries, replace official libraries 
and take control of an application or spy the user.  
A rootkit is a software that enables continued privileged access to a jeopardised computer. It hides its 
presence from administrators and injects code by replacing kernel system calls. For example, the rootkit 
replaces the function which lists all running processes to one which never shows the rootkit name. This it is 
not only useful for hackers; it can also be used by developers to monitor their program. 
On Linux, we can use a special variable to overwrite native libraries: LD_PRELOAD. If we set this variable to 
a custom library, the program will use it. 

# cat soft.c 

#include <stdio.h> 

 

int main() 
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{ 

  printf("pid : %u\n",getpid()); 

  return(0); 

} 

# gcc soft.c -o soft 

# ./soft 

pid : 43562 

Figure 17: Simple getpid() example 

Now create our own getpid() library and set LD_PRELOAD: 

# cat getpid.c 

#include <sys/syscall.h> 

#include <sys/types.h> 

#include <unistd.h> 

#include <stdio.h> 

 

pid_t getpid(void) 

{ 

    return 1; 

} 

 

# gcc -fPIC -shared -o getpid.so getpid.c 

# export LD_PRELOAD=./getpid.so 

# ./soft 

pid : 1 

Figure 18: Custom getpid() library 

As we can see, the program launches our library. To avoid a program alteration, we can display the 
information and after launch the “real” function: 

# cat getpidV2.c 

#include <sys/syscall.h> 

#include <sys/types.h> 

#include <unistd.h> 

#include <stdio.h> 

#include <dlfcn.h> 

 

pid_t getpid(void) 

{ 

    printf("Hello  World!\n"); 

    static void * (*func)(); 

    func = (void *(*)()) dlsym(RTLD_NEXT, "getpid"); 

    return(func()); 

} 

Figure 19: Custom getpid() library V2 

This feature can be used to print arguments passed to a specific function and execute it after printing. It is 
useful to validate if those arguments are coherent during a fuzzing test. 
This method is a static method, but we can use a dynamic method to modify a function on the fly. 
On Linux, we can use ptrace()or Pin to attach code to a running process and inject/replace code. 

On Windows, we can use DLL injection by forcing a running process to load dynamic-link libraries. . 
The result of a dynamic injection is the same as a static injection as seen before. 
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1.7.3 Debugging 

As described on Wikipedia
12

: Debugging is a methodical process of finding and reducing the number of 
bugs, or defects, in a computer program or a piece of electronic hardware, thus making it behave as 
expected. Debugging tends to be harder when various subsystems are tightly coupled, as changes in one 
may cause bugs to emerge in another. The debugging involves numerous aspects, including: interactive 
debugging, control flow, integration testing, log files, monitoring (application, system), memory dumps, 
profiling, Statistical Process Control, and special design tactics to improve detection while simplifying 
changes. 
During a fuzzing test, we may consider two types of debugging: live debugging (dynamic debugging during 
the execution of the program) and post-mortem debugging (after the application has crashed). 

1.7.3.1 Live debugging 

A specific tool called debugger is used to debug an application. This tool monitors the execution of a 
program, stops it, re-starts it, sets breakpoints and changes values in memory. 
A breakpoint is an intentional pause in a program. During this pause, we can inspect the environment as 
registers or memory. After the pause, we can execute the program step by step (in fact ASM instruction by 
ASM instruction). During a fuzzing test, it is necessary to control if all data of a specific function is correct and 
does not involve a buffer overflow for example. 
To debug, we can use debuggers as OllyDBG, Immunity Debugger, IDA Pro for Windows and GDB for 
Linux. In the examples bellow, we will use Immunity Debugger, which is a free tool. 
To illustrate how a debugger works, we simply considerer this code: 

#include <stdio.h> 

#include <strings.h> 

 

int dummy(char *string) 

{ 

  char buffer[10]; 

  strcpy(buffer,string); 

  return 0; 

} 

 

int main(int argc, char **argv) 

{ 

  int a; 

  scanf("%d",&a); 

  dummy(argv[1]); 

  return 0; 

}   

Figure 20: Example of buffer overflow 

If the user put more than 10 characters on the first option, the program will crash due to the strcpy(). We 

can use the debugger to identify this bug. The first step is to identify the function dummy() in ASM: 

.text:004013C0 sub_4013C0      proc near               ; CODE XREF: 

sub_4013DF+2Dp 

.text:004013C0 

.text:004013C0 var_28          = dword ptr -28h 

.text:004013C0 var_24          = dword ptr -24h 

.text:004013C0 var_12          = dword ptr -12h 

.text:004013C0 arg_0           = dword ptr  8 

.text:004013C0 

                                                      
12

 http://en.wikipedia.org/wiki/Debugging 
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.text:004013C0                 push    ebp 

.text:004013C1                 mov     ebp, esp 

.text:004013C3                 sub     esp, 28h        ; char * 

.text:004013C6                 mov     eax, [ebp+arg_0] 

.text:004013C9                 mov     [esp+28h+var_24], eax 

.text:004013CD                 lea     eax, [ebp+var_12] 

.text:004013D0                 mov     [esp+28h+var_28], eax 

.text:004013D3                 call    strcpy 

.text:004013D8                 mov     eax, 0 

.text:004013DD                 leave 

.text:004013DE                 retn 

.text:004013DE sub_4013C0      endp 

Figure 21: dummy() function disassembled 

So we can put a breakpoint at the address: 0x004013C0. On the debugger, the user simply presses F2 on 

the good memory address and it becomes blue:  

 

Figure 22: Immunity debugger at dummy() function 

At this moment, we can use F7 to execute the program instruction by instruction. We can see the stack on 
bottom right frame. It is important to examine it; the stack contains the return address of the dummy function 
which corresponds to the address to jump to when the function finishes (in this case: RETURN to 

test.00401411 from test.004013C0). After the strcpy() function, we can see on the stack that the 

return address of this function is overwritten by AAAA (0x41414141). 
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Figure 23: Immunity debugger show how the application crashed 

The program cannot jump to the address 0x41414141 so the program crashes. 

 

Figure 24: Application crashed 

This example shows how it is important to use a debugger during a fuzzing test to clearly identify the bug’s 
provenance. 

1.7.3.2 Post-mortem debugging 

Unlike the live debugging, the post-mortem debugging involves the analysis of the application after the crash 
and not during the execution. 
To understand the post-mortem debugging process, we will use the same source code used  in the previous 
section. Now we will run GDB tool on a Linux OS and  perform the post-mortem debugging. 
The first step is to generate a core dump: 

user@itrust-dev:~$ ./a AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

1 

Segmentation fault (core dumped) 

user@itrust-dev:~$ file core 

core: ELF 32-bit LSB core file Intel 80386, version 1 (SYSV), SVR4-style 

Figure 25: Core dump generation 

The second step is to analyse the core dump with GDB: 

user@itrust-dev:~$ gdb ./a core 

GNU gdb 6.8-debian 
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Copyright (C) 2008 Free Software Foundation, Inc. 

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html> 

This is free software: you are free to change and redistribute it. 

There is NO WARRANTY, to the extent permitted by law.  Type "show copying" 

and "show warranty" for details. 

This GDB was configured as "i486-linux-gnu"... 

 

warning: Can't read pathname for load map: Input/output error. 

Reading symbols from /lib/tls/i686/cmov/libc.so.6...done. 

Loaded symbols for /lib/tls/i686/cmov/libc.so.6 

Reading symbols from /lib/ld-linux.so.2...done. 

Loaded symbols for /lib/ld-linux.so.2 

Reading symbols from /lib/libgcc_s.so.1...done. 

Loaded symbols for /lib/libgcc_s.so.1 

Core was generated by `./a AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'. 

Program terminated with signal 6, Aborted. 

[New process 24129] 

#0  0xb7f8b410 in __kernel_vsyscall () 

(gdb) bt 

#0  0xb7f8b410 in __kernel_vsyscall () 

#1  0xb7e57085 in raise () from /lib/tls/i686/cmov/libc.so.6 

#2  0xb7e58a01 in abort () from /lib/tls/i686/cmov/libc.so.6 

#3  0xb7e8fb7c in ?? () from /lib/tls/i686/cmov/libc.so.6 

#4  0xb7f19138 in __fortify_fail () from /lib/tls/i686/cmov/libc.so.6 

#5  0xb7f190f0 in __stack_chk_fail () from /lib/tls/i686/cmov/libc.so.6 

#6  0x08048443 in dummy () 

#7  0x41414141 in ?? () 

Figure 26: Core dump analysis 

As we can see the last called function in the program is dummy() so we can conclude that this function 

contains the bug that has crashed the program. 

1.8 SUMMARY 

This section described the contribution of DIAMONDS partners in the context of model based monitoring and 
inspection. The concepts presented are complementary and present an interesting background to build 
innovative model-based monitoring techniques. 
 
Unlike active testing, passive monitoring does not inject traffic in the network or modify the traffic that is being 
transmitted in the network. Nevertheless, active testing can be very crucial to stimulate critical systems and 
detect vulnerabilities and security flaws. Concepts of active testing will be presented in the next section. 
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2. ACTIVE TESTING CONCEPTS 

2.1 INTRODUCTION 

Chapter 2 discusses methods for active testing with the objective to generate security relevant test case 
directly from available models. Approaches that are discussed in this chapter include conformance testing, 
model extraction, fuzzing, and mutation-based test case generation. In conformance testing a model, a 
certain safety property, and a test purpose have to be available. The model captures the behavior of the 
system usually in terms of finite automata or other directed graph structures. The test case generation 
method uses the test purpose and the properties to extract the test cases from the model. The underlying 
methods in case of security testing are the same than the methods used for extracting functional test cases.  
 
Extracting models from a system under test (SUT) is a good idea because it prevents from writing models, 
which requires additional effort. The described method makes use of static and dynamic extraction methods. 
Static methods for example allows for giving back structural information of the SUT, e.g., control flow graphs. 
Dynamic analysis allows for deriving use patterns or the frequency of execution of a certain part of the SUT. 
The proposed method uses the obtained model and generates abstract test cases. The underlying idea here 
is to compare the model with vulnerability patterns. From the abstract test cases concrete, i.e., executable, 
test cases can be obtained using fuzzing. 
 
When dealing with model-based testing using model mutations strategies for test case generation become 
important. This is especially true when the aim is to produce test cases for practical applications where the 
models usually are larger. Thus test case generation quickly becomes unfeasible and there is a need for 
improving the test case generation methodology. Therefore, one part of this chapter describes different test 
case generation strategies in the context of mutation-based testing and compares them with respect to 
running time and the quality of the generated test suites in terms of their capability to detect faults. Knowing 
optimal strategy is important also within the DIAMONDS project to make test case generation methods 
applicable in a practical setting. 
 
Another important part of active testing is the question of the modeling language used. UMLSec is an 
extension of UML developed for security applications. Relying on standards like UML is a good idea to 
increase the applicability of approaches. In this chapter the use of UMLSec to specify CORAS risk models 
(and in particular the conversion of such risk models to UMLSec) is described. Another method introduced in 
this chapter also makes use of UML. The idea behind is to apply Fuzzing to UML sequence diagrams. In this 
method basically mutation operators like moving messages or negating constraints and conditions are used 
to find test cases that potentially break code. 
 
The methods described in this chapter provide a valuable basis for further research and applications in the 
context of active security testing. 
 

2.2 MODEL-BASED SECURITY TESTING FROM TEST PURPOSES 

 
 
Model-based security testing from test purposes is an extension of model-based testing (MBT) which targets 
the conformance testing of security functions w.r.t the specifications but also vulnerability testing. Figure 27 
illustrates the global process of model-based security testing with four steps. 
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Figure 27: Process of model-based security testing with test purposes 

 

• Step 1 – Defining Security Test Objectives. From the security property and vulnerability analysis, 
a Security Engineer defines the security test objectives. These expose in a detailed (but informal) the 
statements of test objectives for security testing, and possibly way of testing (how to test). These 
security test objectives define the testing strategy and impact both the modelling activities and the 
driving of automated security test generation.  

• Step 2 – Modelling. In this phase, there are two main modelling activities that are delivered by the 
Security Test Expert in an incremental way: 

o Step 2a - Behavioural modelling of the System Under Test (SUT). This model focuses on  
security features and test vulnerabilities. In fact, the behavioural model is restricted on the 
features relevant to the security test objectives. The model formalizes the relevant point of 
control and observation, and the expected behaviours of the SUT. This behavioural 
modelling activity differs from classical functional model-based testing, because the security-
oriented behavioural model integrates non-nominal stimuli (stimuli that are not part of the 
specifications) but which correspond to possible actions from an attacker. Also, the 
observation points may be specifics to reinforce the capability of establishing an accurate 
verdict the generated security tests. The security-oriented behavioural model is build on the 
basis of the SUT functional requirements and the security test objectives. 

o Step 2b – Security Test Purpose definition. Security Test Purposes are a formal definition 
of the security test objective. They allow explaining the objectives with dedicated test 
purpose language. So, this formalization is able to express meta-scenario in terms of state 
and actions in regards of elements of the model. Each security test purpose is unfolded in 
several (or multiple) tests related to a particular test objective. Figure 28 provides an 
example of Security Test Purpose in a smartcard application domain. 
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• Step 3 – Automated test generation. From the security-oriented behavioural model and from 
security test purposes, security test cases and test scripts are generated. At this stage, the same 
process with functional MBT applies (see [67] Utting 2007): generated tests are published in a test 
repository, and test automation required a development of a so-called adaptation layer to implement 
the action words defined in the behavioural model. 

 
Within the Diamonds project, this process is supported by the Smartesting approach for Security testing. The 
Smartesting prototype, developed within the Diamonds projects, takes as an input security-oriented 
behavioural model using UML/OCL notation and security-test purposes based on a dedicated language. This 
prototype and associated concepts is presented in detail in Diamonds deliverable 
D2.WP3.Initial_design_of_security_testing_tools.  
 
Figure 28 present an example of a test purpose in the Smartesting and it is unfolding after test generation in 
four different test scenarios.  
 

 

Figure 28: Test purpose example and unfolding 

 
To summarize, model-based security test generation is based on security-oriented behavioural model and 
security test purposes. It targets the testing of security functions in a SUT and vulnerabilities to be tested on 
the basis of the Security Test Objectives. In this approach, the Security Test Expert is in charge of the 
development and the maintenance of the models and the test purposes, and he/she drives the test 
generation using a test generation tool. 
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2.3 INTEGRATION OF BASIC SECURITY RULES INVOLVING ATOMIC ACTIONS 

Security and reliability are important issues in designing and building systems with time constraints because 
any security failure can be risky for users, their business and/or their environment. Currently, software 
engineers developing systems, with time constraints, are not only confronted to their functional requirements 
but they also have to manage other aspects concerning security issues. We mean by ‘functional 
requirements’ the services that a system offers to end users. Whereas, security rules denote the properties 
(restrictions) that a system has to fulfill to be always in a safe state, or also to guarantee good quality of 
services it provides. For instance, a file system may have to specify the prohibition for a user to access to a 
specific document if he/she is not authenticated or if his/her session of 10 minutes has been expired. More 
generally, a security rule expresses the obligation, permission or interdiction to perform an action under 
given conditions called context. 
 
Complex systems are often incrementally designed. They are evolutionary where new requirements may 
appear during its life cycle and then have to be integrated to its initial specification. In this paper, we deal 
with a particular kind of requirements denoting security properties. Basically, we provide a formal approach 
to integrate elaborated security rules involving time constraints into a system specification based on 
communicating extended timed automata called TEFSM specification

13
. The resulting model can be used to 

generate code or the automatically derive security-oriented test cases. 
 
We use the Nomad

14
 formal language to specify without any ambiguity the set of security properties that the 

system has to respect. The choice of this language is mainly motivated by the Nomad features that provide a 
way to describe permissions, prohibitions and obligations related to non-atomic actions within elaborated 
contexts that takes into account time constraints. By combining deontic and temporal logics, Nomad allows 
to describe conditional privileges and obligations with deadlines, thanks to the time concept it supports. 
Finally, it can also formally analyze how privileges on non-atomic actions can be decomposed into more 
basic privileges on elementary actions. 
 

We describe here the integration of basic security rules of the form R(start(A|O
[<]-d

done(B)) where R ∈ 
{F;O;P}, A and B denote atomic actions, and (d > 0). Since we deal with a timed context, we need to define a 
global clock gck to manage the temporal aspect of the rules. 

2.3.1 Prohibition integration: F(start(A)|O[<]-ddone(B)) 

The key idea of integrating such a prohibition rule in a TEFSM model is to check the rule context before 
performing the prohibited action. If this context is verified, the prohibited action A must be skipped. 
Otherwise, if the context is not valid, the action is performed without any rule violation. To achieve this goal, 
a table Prohib has to be built to store all the instants (or moments) where it is prohibited to trigger a given 
transition since it contains the forbidden action A. These instants are denoted by a predicate on clock gck 

which is a global clock for the system launched in its initial state. For instance, a predicate ((gck < 10) ∨ (gck 
= 15)) means that the execution of a transition tr is prohibited till the tenth unit of time and also at the fifteenth 
since it contains a prohibited action. We also define the function val(gck) that provides the clock value gck at 
a specific moment. Table Prohib(tr) is updated as follows (tr denotes a transition where action A appears): 

• After each occurrence of B in the TEFSM transitions, the value of Prohib(tr) is updated by adding a 
predicate on the instant(s) when it is prohibited to trigger tr since it contains action A. The new value 
of Prohib(tr) is defined by: 

 
 
Prohib(tr) = 
 
                                                      
13

 M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis, “The IF Toolset,” in SFM, 2004, pp. 237–267. 
14

 F. Cuppens, N. Cuppens-Boulahia, and T. Sans, “Nomad: A Security Model with Non Atomic Actions and Deadlines,” 
in CSFW, 2005, pp. 186–196. 

Prohib(tr) ∨ (gck < val(gck) + d)  for  F(start(A)|O
<-d

done(B)) 
 

Prohib(tr) ∨ (gck = val(gck) + d)  for  F(start(A)|O
-d

done(B)) 
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• Before triggering the prohibited transition tr, we check whether the value val(gck) satisfies 
(Prohib(tr)) to deduce if tr can be fired or not. 
 

Notice that Prohib(tr) can be updated according to all the security rules that deny the execution of any action 
A that may be executed in tr. Depending on each context, the update of Prohib(tr) is performed as mentioned 
above. 
 
The prohibition integration methodology performs a primary processing of the initial TEFSM specification, so 
that no transition would contain the prohibited action A after action B. Figure 29 illustrates this primary phase 
by decomposing the transitions where prohibited action A appears after action B. 
 

 

 

Figure 29: Transition decomposition 

Transition (t3 =< S2; S0; - ; (B;A;C;B) >) for instance has been split into two transitions (t3 =< S2; S5; ;B >) 
and (t5 =< S5; S0; - ; (A;C;B) >) by introducing the new state S5. In the resulting specification, we want to 
integrate the rule F (start(A) | O

<-d
 done(B)) which stipulates that it is forbidden to perform action A within d 

units of time of B being performed. The application of the above mentioned algorithm produces the secure 
system depicted in Figure 30. 

 

Figure 30: Prohibition rule integration: F (start(A) | O
<-d

 done(B)) 
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2.3.2 Permission integration: P(start(A)|O[<]-ddone(B)) 

 
The algorithm to integrate a permission rule is very similar to the above mentioned algorithm. A variable 
Permis(tr) is defined for each transition that contains an action A appearing in a rule of the form 
P(start(A)|O

[<]-d
done(B)). Permis(tr) stores all the instants where it is permitted to trigger tr; it is updated 

exactly as Prohib(tr) each time action B occurs. Finally, we have to check that predicate Permis(tr) is 
satisfied before triggering transition tr. 

2.3.3 Obligation integration 

Since different obligation rules related to action A may be defined, we have to take into account the possible 
dependencies that may exist between them. In fact let us consider for instance rules O(start(A) | O

-5
 done(B)) 

and O(start(A) | O
<-10

 done(C)) where action C is executed 3 units of times (less than 5 units of times) after 
the execution of B. The execution of action A five units of time after the execution of B satisfies both rules at 
the same time. The idea behind this simple example is to check if it necessary to execute the mandatory rule 
for each execution of the context action. To integrate an obligation security rule in the TEFSM based system 
specification, we rely on a new process RHP which ensures the execution of the mandatory action. If the 
related mandatory action is not executed by the initial specification, process RHP then has the task to 
execute it itself. The integration methodology follows these steps for a rule in the form of O(start(A)|O

[<]-d
 

done(B)) where d>0: 

• A boolean variable waitA is defined. It checks whether we are waiting for the execution of an 
instance of action A or not. This variable is set to true at the execution of each action B for which an 
obligation rule O(start(A) | O[<]-d done(B)), and set to false when action A is executed. 

• The definition of a new process that can be created (forked) n times by the initial functional 
specification, where n is the maximum number of simultaneous executions of action B in the initial 
TEFSM specification. This new process has two parameters. The first parameter, equal to (val(gck) 
+ d) (resp. (val(gck) + (d - 1)))², states the instant when (resp. before which) action A should be 
executed if we deal with the O

-d
 timed operator (resp. O

<-d
). The second parameter exactTime is a 

boolean variable which determines whether action A must be executed at (val(gck) + d) (for a rule of 
the form O (start(A) | O

-d
 done(B))) units of time or before this moment (for a rule of the form O 

(start(A) | O
<-d

 done(B))). The process has to wait until the execution deadline of action A is reached. 
Also, we give it a lower priority with respect to the main process in order to let this last executes its 
actions at first. To do that, we declare the transitions of this new process as delayable. A delayable 
transition allows time progress unless time progress disables it, in that case it is taken. The deadline 
and the actions to perform (deadline; Action) depends on the type of rule and whether we are waiting 
for an execution of action A: 

 
 
 
(deadline; Action) = 
 
 

 
In Figure 31, it is presented the integration of an obligation rule within the initial system depicted in Figure 29. 
In this functional system, we can find several occurrences of the atomic action B. 

 
 

(gck = val(gck) + d, A; (waitA := false); stop) for O(start(A)|O-ddone(B)) 

 

((gck = val(gck) + (d-1)) ∨ ¬waitA; if waitA then (A; stop)); 
for O(start(A)jO<�ddone(B)) 
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Figure 31: Obligation Rule Integration 

2.4 COMBINING MODEL-RECOVERY AND EVOLUTIONARY FUZZING 

 
The aim of security testing is to find vulnerabilities in the SUT that could be exploited to subvert the security 
of the SUT. According to OWASP, “A vulnerability is a hole or a weakness in the application, which can be a 
design flaw or an implementation bug, that allows an attacker to cause harm to the stakeholders of an 
application.” 

2.4.1 The General Approach 

The objective of this work is to use testing techniques to exhibit security vulnerabilities on a System Under 
Test (SUT) by combining three main steps: 
1) model recovery, which consists in building (or retrieving) a (partial and abstract) behavioral model of the 
SUT; 
2) model-based vulnerability detection, to provide some abstract test cases as model-level execution 
sequences that may activate some vulnerabilities; 
3) evolutionary fuzzing, whose goal is to concretize those abstract test sequences following a mutation-
based input generation guided by a fitness function. 

A high-level view of this general approach is illustrated in Figure 32: 
 
 

 

Figure 32: A general view of the proposed approach 
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a) Model recovery 
The goal of this step is to build a model of the SUT able to (partially) describe its behavior at some abstract 
level. This model recovery can be performed following several techniques, according to the initial knowledge 
available on the SUT (e.g., source/binary code, input formats, main use cases, etc.). Depending on this 
knowledge this model may be obtained using a dynamic analysis (by means of well-chosen executions of the 
SUT), or by a static code analysis (based on reverse engineering techniques). 
In the former case the model obtained express a set of (parameterized) interaction sequences/trees between 
the SUT and its external environment. In the latter case, this model reflects the code structure of a SUT, for 
instance as a control-flow graph. 

b) Vulnerability detection 
Once a model has been obtained, the next step consists in looking for potential vulnerabilities. This search 
can be guided by some attack or vulnerability patterns, defined at the model level.  Again, the technique to 
use may depend on the nature of the model (model-checking, syntactic recognition, static analysis, etc.). 
The result is a set of abstract execution sequences (defined on the model) that may lead to potential 
vulnerabilities (i.e., matching some vulnerability patterns). Note that these sequences may refer to a possibly 
unsound and incomplete behavioral model of the SUT. 

c) Evolutionary Fuzzing 
This next step aims at turning the abstract test sequences into concrete test cases able to activate effective 
vulnerabilities on the SUT. It is based on a so-called evolutionary fuzzing, which consists in computing 
successive improvements of an initial random set of (concrete) SUT input sequences by mutations and 
crossovers. Each input sequence leads to an execution sequence which is scored by a fitness function. This 
function measures: 
- the deviation of the concrete execution sequence from the expected abstract one (which is 

supposed to lead to a vulnerability); 
- how able is this concrete sequence to activate this vulnerability. 
This process stops either when the vulnerability is revealed (then the test is successful), or when a maximal 
number of executions has been reached (then the test fails). Let note that these test executions may also be 
used to refine the initial model (and hence the abstract test cases). 
  
In the following sections we describe two instances of this general approach corresponding to two specific 
contexts: 
- a black-box instance, able to detect design-level vulnerabilities; 
- a white-box instance, able to detect code-level vulnerabilities. 
A long-term perspective could be to combine these two approaches on a same case-study to address a 
larger range of security vulnerabilities. 

2.4.2 Smart Black-Box Fuzzing 

In this section we instantiate the approach considered in the case where we do not have access to the 
source code of the SUT, so all the tests are done in black box mode. The result is shown in Figure 33. 
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Figure 33: Our proposed approach on combining model inference and fuzzing for automated 
vulnerability search on a black-box SUT 

a) Combining model-inference, evolutionary algorithm and fuzzing: approach overview 

a.0) Assumptions: it is assumed that the SUT input and output symbols and their parameters (types and 
structures) are known. Also that the security goals/objectives – that are security properties we want to verify 
on certain set of SUT model parameters - are modeled. Note that such properties would usually be simple 
(e.g. allowing/denying access to a resource, absence of crash, etc.). They could be expressed either as state 
properties, or more generally as trace properties described by temporal logic. 

a.1) Producing abstract vulnerabilities models that might exist in the SUT. A vulnerability model contains 
at least one state that violates at least one security goal, or in the more complex case, a trace that violates 
the goal. 

a.2) Vulnerability driven evolutionary exploration: the two main goals are to produce an abstract model of 
the SUT and to guide the test execution towards vulnerable states. For that, input sequences will be 
submitted to the SUT in order to discover new states, but also once a condition (e.g. discovery of a state 
similar enough to one present within a vulnerability model, number of inference steps, number of discovered 
abstract states..) has been fulfilled. Then several abstract test cases will be created to put the execution flow 
towards states that have the strongest similarity with states present within at least one vulnerability model. 
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Model recovery could thus use similarity metrics between states. Since an evolutionary algorithm will be 
used, the fitness function will take those variables into account for guiding the exploration wrt to the two 
stated goals.  

a.3) From abstract to concrete test cases – evolutionary fuzzing and attack patterns: once an abstract 
vulnerability-pattern has been found (modulo a similarity metrics), the goal is to generate concrete input 
sequences for verifying whether it could correspond to a vulnerability within the implementation. For that 
purpose, evolutionary fuzzing and attack patterns (regarding the specific abstract vulnerability being tested) 
will be combined for enhancing the concrete value space. 

a.4) Abstracting the SUT outputs: each time a concrete test is executed on the SUT, a potentially new 
knowledge is obtained. Once abstracted/projected, the SUT outputs will be processed through an adaptation 
of the [31] inference algorithm, and abstract input scoring will then be performed. 

a.5) Iteration: the testing process will go back to 2, if no concrete input sequence exhibiting the potential 
existence of the vulnerable state was generated. 

b) More precise approach 

b.1) Abstract vulnerability model generation 
Starting from generic parameterized vulnerability models and security objectives, generate abstract 
vulnerability models. A vulnerability model contains at least one state that violates at least one security 
objective on a set of SUT parameters. 
In [62] interesting results were obtained by testing a given implementation A wrt to vulnerabilities We 
consider doing something similar in that black-box fashion.  

b.2) Vulnerability driven evolutionary exploration 
An evolutionary algorithm will be used to guide the exploration process. Here is the pseudo-code of such an 
algorithm: 
-------------------------------- 

INITIAL_POPULATION = accepted SUT inputs inferred so far (might be empty) 
REPEAT 
 • SELECT parents 
 • RECOMBINE parents 
 • MUTATE offsprings 
 • EVALUATE candidates with FITNESS function 
 • SELECT the fittest candidates for next population 
UNTIL TERMINATION_CONDITION is met 
  
Return SOLUTIONS, if found 

-------------------------------- 
At that level, mutation consists either in adding an input symbol to a given input sequence or mutating the 
final input symbol (in particular its parameters). 
The fitness function will assign a higher score to input sequences that led to discovering new states in the 
SUT and to ones that led the execution towards states that are “similar” to ones within at least one 
vulnerability model. One important thing to notice is that scoring will be possible after step 4 (output 
abstraction) and the inference process. 
Similarity metrics will be computed regarding partial matches such as input and output symbols and or 
parameters. Methods such as state distinguishability regarding a set of input sequences as stated in [27] will 
be investigated. 

b.3) from abstract to concrete test cases: evolutionary fuzzing and attack patterns 
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During that step, concrete executable tests are generated from abstract tests. For that purpose, an 
evolutionary algorithm (EA) will also be used, in which the population is the concrete SUT inputs and the 
genes are the instantiated input symbols and parameter values. 
Attack patterns depend on the given vulnerability being tested. They will influence how the inputs will be 
fuzzed (recombined and mutated). Input parameters will be fuzzed wrt their type values (e.g.: 2^i-1 V i in 
[0..n-1] if we assume that the integer is unsigned on n bits) but also their representation and the messages 
structure (eg: voluntarily invalid message format within a XML message, incoherent headers...). 
The recombination step is performed using several crossover methods (cross sessions, cross transitions, 
cross of parameters within the same transition). Note that the input parameters in the model are typed (e.g.: 
integer, string, xml structure...). Thus crossover will be performed wrt. those types. 
 
The fitness function will take as arguments the fitness score assigned and some kind of randomness, to 
avoid getting a flat value space.  
 
b.4) abstracting the SUT outputs and infering 
Concrete output values will be abstracted. Inference then takes place in order to determine if the reached 
abstract state is a new one or not. To decide this, discriminating abstract input sequences are sent to the 
SUT. Thus until it is determined if the reached abstract state is the same as another one or not, such input 
sequences will have a temporary increased scoring. 

b.5) Eventual iteration 
The TERMINATION_CONDITION is evaluated to true when a security goal has been violated. It could be 
any of the following stopping criteria: availability (e.g.: in case of a SUT crash or too long delays for 
processing an input) or reaching a vulnerable state (within a vulnerability model). 

  
Finally, if the algorithm stops we have at least one concrete input sequence for the SUT leading to a state 
that violates a security goal. 

c) Remark regarding model Inference 
During the process (and especially at steps 2 and 5), the SUT will be actively inferred using a modified 
version of the [31] algorithm. 
Model inference consists on automatically building a model of the SUT by observing and abstracting 
behaviors in terms of inputs/outputs. In the hacking terminology some would refer to this as an automated 
reverse engineering method. 
Two categories of model inference do exist: active learning and passive learning. Passive learning checks 
that some invariant properties are not violated by observing captured traces. Active learning is free to 
interact with the system. In situation where this assumption holds, we chose to focus on active learning since 
it will converge faster than passive learning. 
Angluin’s L* algorithm [1] is a famous example of an active learning algorithm. Some algorithms might 
however be more suitable for inferring transition with parameters [47][31] (especially in terms of number of 
inferred states). We will use that last one which better corresponds to security concerns.  

2.4.3 Smart White-Box Fuzzing 

In this section we instantiate the approach in the case where we can access the code of the SUT, so that at 
least its control flow can be retrieved by mostly by static analysis. 

a) Code analysis assisted smart fuzzing 
The focus of this work is on implementation bug. Fuzzing has been proved to be very effective in finding 
implementation bugs. However, given the complexity of modern applications, using the fuzzing in its 
traditional form i.e. blind fuzzing, may not be very effective always. By considering the factors such as how 
an application process the information/data, how does it interact with its environment etc. in the process of 
fuzzing may help to fuzz in a better way and thereby making the fuzzing more effective i.e. smart fuzzing.  
One of such factors is how does the application process the data, and specially the input that is tainted. In 
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order to observe this behavior, we need to consider a suitable model of the application, obtained from its 
source or binary code. By analyzing this model, we can establish two things: 

1. There exist a bug (a pattern that exhibits weakness)- target or sink 

2. Tainted input (source) can reach this target. 
 
In essence, by analyzing the code, we can show, conservatively, that there exists a bug and a path from 
source to sink which could be used to exploit the vulnerability. However, to eliminate false positives, such a 
static approach needs to be completed by information available only at runtime. A dynamic analysis of the 
application involves the generation of concrete inputs, expected to trigger vulnerabilities. In the following 
sections, we elaborate our approach.    

b) Overview of the Approach 
The ultimate aim of the approach is to generate inputs that can trigger the vulnerability residing inside the 
SUT. The approach we propose has three distinct features.  

1. We are focusing on buffer overflow type vulnerability, which are still ranked very high among other 
serious vulnerabilities [15]. Traditionally, studies which focus on BoF relies on the presence of 
infamous “strcpy” family of functions as sink. We argue that there may be other functions of similar 
functionality and therefore, by considering only the known (infamous) functions gives us a false 
sense of BoF detection. In this study, we devise a method to find similar “interesting functions” by 
describing the notion of “interesting loops” and a method to detect them (in binary code, see below). 

2. We analyze the SUT on its compiled executable form which means that our whole analysis is done 
on the executable of the application. This is challenging, but on the same time provides us the 
opportunity to analyze the code that is closest to the machine (WYSINWYX [14]) and also widens 
the scope to analyze COTS software and library functions. The side effect of this analysis is the 
generation of abstract test cases as tainted paths from source to the sink. In our case, source are 
the functions that accept tainted data and sink are the functions found in item 1 above. 

3. Once we get the tainted path, we proceed further by generating inputs those goal is to trigger 

vulnerabilities. Choosing relevant inputs is crucial since, as while doing an abstract  tainted path 

calculation, we may not be aware of the semantics of some intermediate function that may sanitize 

the input data before it reaches the target. In this work, we propose to use evolutionary strategies to 

generate such inputs. Our fitness function is based on the tainted path that is calculated in the above 

step.  

 
Following, we describe each of these contributions in details.    

c) Interesting Functions as targets 
From vulnerability detection standpoint, interesting functions are procedures in program that introduce some 
kind of vulnerability in the program. In the current work, we focus on string buffer overflow type of 
vulnerabilities. More specifically, we are interested in functions that copy strings from one buffer to another. 
strcpy() family of C/C++ functions is such an example, which are known to the world.  Our proposition is that 
it is the functionality, and not the function (name) that makes it vulnerable. There could be several functions 
that exhibit similar functionality as that of strcpy(). Indeed, several vulnerabilities discovered in a recent past 
were due to such functions

15
. This leads to the following definitions: 

Interesting Loop: A loop is interesting if there is memory write within the loop and that memory is changing 
within the loop. 
Interesting Function: A function is interesting if it contains an interesting loop. 

                                                      
15

One could mention for instance functions wcscpy() and SSL_get_shared_ciphers() functions in OpenSSL 
(CVE-ID:2007-5135) 
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As mentioned, we analyze the binary of the application and therefore, detecting interesting function is very 
challenging. At binary level, we do not have a very clear understanding of the underlying structures, its 
variables, memory access etc. In order to capture the patterns for interesting loops, we define several 
dependency relations and formulate an algorithm to detect them. Once the interesting loops and hence the 
interesting functions are detected, they become the target for generating the tainted path that is explained in 
the next section. 

d) Tainted Information Flow 
The idea of taint-flow analysis is originally based on the dynamic analysis aspect of the SUT (e.g. perl taint 
mode). Thereafter, it is adopted to static analysis aspect in the form of data-dependency analysis from 
tainted input to the sink. Depending upon the level of analysis, dependency can be among 
variables/registers or the memory locations. However, at binary level, performing a fine grained data 
dependency that involves memory has not been much explored area. In this work, we investigate the use of 
value set analysis (VSA) [11] to perform a taint propagation or taint dependency analysis. The result of such 
analysis is the set of paths from tainted input to interesting functions. In essence, this analysis will find the 
path from tainted input to the interesting function such that the input can influence the execution of the 
interesting loop.         

e) Input Generation with Evolutionary Fuzzing 
Once the tainted paths are determined, we still need to verify the vulnerability. In order to do so, we shift 
from static analysis to dynamic analysis. Our aim is to generate inputs that trigger the vulnerability by 
executing the interesting function. We know that in order to execute the function, we need to follow the 
tainted path or to put in other words, by following the tainted path, we can reach the interesting function and 
can trigger the vulnerability. Therefore, we need to generate inputs that follow a certain path in the SUT. In 
other words, search for the inputs such that a certain path is covered. Looking at this perspective, the 
problem of generating inputs can be thought of a search problem. Evolutionary algorithms (e.g. genetic 
algorithms) are well known techniques for search based problems. As a consequence, evolutionary 
algorithms have been used in testing. We investigate the use of evolutionary algorithms to generate such 
inputs to facilitate fuzzing process. The idea is to generate fuzzed inputs such that they can traverse the 
tainted path. The fuzzing part can be mapped to genetic operators mutation and cross-over i.e. apply 
mutation or/and cross-over to fuzz the input sensibly. As the consequence of our VSA based static analysis, 
we know that which part (offsets) of the input file influences the target and we can mutate only these parts 
such that it contains the symptoms of BoF (i.e. long string) and ability to reach the vulnerable function. The 
initial ideas are presented in [61].           

2.5 MUTATION TESTING 

 
Often implementations that pass functional tests may still be vulnerable to attacks and a number of these 
vulnerabilities are detected after the release of the product despite of rigorous testing. The aim of security 
and vulnerability testing is to cover a large number of possible security faults and vulnerabilities. One 
effective way to address this problem is to adapt mutation analysis so that security policies are defined in 
terms of specific mutation operators yielding a test selection criteria suited for security and vulnerability 
testing. 
 
Mutation testing is a software testing method which involves modifying the system code in small changes, 
yielding a faulty system, a mutant of the original one. These changes mimic typical errors that a programmer 
could have made. The goal is to find weaknesses in a test suite and to develop more effective one. 
 
Mutation analysis is typically applied on program code. In this document, however, we discuss mutation 
testing from system model based testing point of view. This approach mutates the system (or design) model 
and then compares the mutants with the original model to automatically generate test cases and evaluate 
coverage. 
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2.5.1 Mutation Analysis Process 

 
Mutation analysis process induces faults in to the system by creating many different versions of the system 
each containing one fault. The basic idea is then to see if the test cases can detect these faults i.e. the test 
cases are used to execute these faulty systems in order to distinguish the faulty system from the original 
system. The main objective is to select such a set of test cases that can be used to detect errors. Faulty 
systems are mutants of the original system and a mutant is said to be killed by distinguishing the output of 
the mutant from that of original system. In other words, a test case that detects a fault injected thru a 
mutation kills the given mutant and if the test suite kills all the mutants, it potentially detects many unknown 
faults in the implementation. Mutants that are not killed are said to be alive and if the mutant produces the 
same output as the original system, they are equivalent and cannot be killed. 
 
Mutation testing and analysis provides a testing criterion rather than a testing process. Testing criterion is a 
set of rules that impose some requirements on the test cases. We use coverage as a measure of the extent 
in which the criterion is satisfied; for example reaching a statement is a requirement for statement coverage 
while killing mutants is the requirement for mutation. Coverage is measured in terms of the requirements and 
it is defined to be the percent of requirements that are satisfied. Testing criteria gives requirements of how 
much testing is actually needed and we use mutation testing as a way to measure the quality of the test 
cases. 
 
Mutants represent likely faults that the programmer could have made by a mistake. Each mutant introduces 
a very small change, i.e. a fault, to the system compared to the original one. Mutants are limited to simple 
changes to the system on the basis of coupling effect meaning that complex faults are coupled with simpler 
ones in a way that test cases that detect all the simple faults will also detect the complex faults. Mutated 
versions are created by applying mutation operators that are rules applied to the system to create mutants. 
These are simple syntactic or semantic transformation rules: typical examples are deleting an assignment 
expression and replacing or inserting new operators to create syntactically legal expressions are examples 
of typical mutation operators.  
 
The mutation score (or mutation adequacy) is calculated once all the test cases have been generated. 
The mutation score is the ration of dead mutants over total number of non-equivalent mutants: 
 

mutation score = number of killed mutants / total number of non-equivalent mutants 
 
As with any other testing criteria, the goal here is to raise the mutation score to 100% which is indication that 
all the mutants have been detected and covered by the test cases. This ratio can be increased by adding 
more test cases that detect live mutants: live mutants reveal inadequacy in the test suite. Equivalent mutants 
are not counted in the mutation score. It is worth noting that mutation score gives some indications about the 
extent of the test suite even if a tester manage not to find defects in the implementation using the set of test 
cases. 
 

2.5.2 Mutation Operators 

 
A mutation operator is simply a syntactic or semantic transformation rule like replacing operator == with !=. 
The mutants are generated by applying these mutation operators to the original system. Application of these 
mutation operators should model potential faults that a programmer could have accidentally make, therefore 
it is of great importance to identify different kinds of faults. Note that ultimately the number and type of 
mutation operators influences the number and extent of tests that are produced. 
 
Mutation operators are limited to simple changes to the system on the basis of coupling effect. This says that 
simple faults are coupled with complex faults in a way that test suite that detects simple faults will also detect 
complex faults. This was first hypothesized in late 70’s and demonstrated theoretically in mid 90’s. 
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Mutation operators are independent of the specification notation and typical mutation operators for a textual 
specification notation are for example 

• Associative shift: change the association between variables 

• Expression negation: replace an expression by its negation 

• Logical operator replacement: replace a logical operator (&&, ||) by another logical operator 

• Missing condition: delete conditions from conjunctions and disjunctions 

• Operand replacement: replace an operand i.e. a variable or a constant by another syntactically valid 

one 

• Relation operator replacement: replace a relational operator (f.ex. <, ≤, =, ≠, >, ≥) by another 

relational operator 

 
Typical mutation operators for graphical notation such as state chart based notation are for example 

• Missing state: delete a state from the state chart 

• Missing transition: delete a transition from the state chart 

• Initial state exchanging: exchange the initial state to be another state in the state chart so that the 

state chart execution starts from a different point 

• Source state exchange: exchange the source state of a transition by another state in the state chart 

• Target state exchange: the target state of a transition by another state in the state chart 

 
Mutation operators applied to textual notation can be used in conjunction with graphical notation so that for 
example a guard condition of a transition is negated using Expression negation operator. 
 
For security and vulnerability testing, the mutation operators should be based on common programming 
errors likely to trigger vulnerability. For example the above mentioned mutation operators can be readily 
used to address vulnerabilities such as buffer overflow as the causes for such include logical errors such as 
off by one error, absence of a null character at the end of a buffer, use of functions that do not check the 
buffers sizes when performing certain operations, incorrect buffer variable values, etc. These mutation 
operators can be used for detecting boundary condition errors by applying for example relation operator 
replacements, input validation errors, access right errors, environment errors such as integer under and 
overflows, and synchronization errors where mutations are used to reorder the lock/unlock operations. 
 

2.5.3 Mutations for Test Generator 

 
Mutation analysis is usually applied to actual program code to automatically generate unit tests and like. 
However, mutation analysis can be also applied in specification or design model driven automatic test 
generation. This approach mutates the specification instead of real program code and then applies 
techniques to automatically design test cases to compare the mutants with the original specification to 
automatically design and generate tests and to evaluate coverage. 
 
When mutation analysis is applied for design model driven automated test design, it can be used to (1) 
validate test cases and/or to (2) generate test cases. 
 
Essentially when mutation analysis is used to validate test cases we first generate test cases without any 
mutants. Then mutation operators are applied to the model in order to generate mutants. Test cases are 
then executed against on each mutant and if the output of the mutant differs from the original output (the 
correct one), the mutant is marked as being dead.    
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When mutation analysis is used to generate test cases, the test generation tool simply generates tests that 
kill the mutants. 
 
After these steps, we need to identify equivalent mutants (i.e. those mutants that cannot be killed due to the 
fact that they are semantically equal and they produce the same output as the original system) in order to 
provide a precise and accurate mutation score. Finally, mutation score is calculated and presented.  

2.6 MODEL-BASED MUTATION TESTING 

 
In this section we discuss the influence of strategies for generating test cases from models using mutations. 
The content of the section originates from results obtained during the EU FP7 project MOGENTES 
(www.mogentes.eu). The reason for adding this section relies in the potential importance for DIAMONDS 
when using model-based mutation testing in the context of testing security issues. Let us discuss the 
usefulness of mutation testing in the context of security testing using a simple example from [33] (page 51). 
In the example, an exploit is used that allows an attacker to execute a shell command on a server. The 
corresponding software bug on the server side that causes this vulnerability might look like this: 
 
$username = ARGV; 
system("cat /logs/$username" . ".log"); 

 
In this program fragment a call system() takes a parameter ($username) that is unchecked. If $username 
takes an existing user, a file with name $username and extension log in the directory /logs is displayed. 
In case the user does not exist, an error is reported. Now consider the case where an attacker provides a 
$username that looks like this: 
 
bracken;rm -rf / ; cat blah 

 
In this case the system call would have the parameter 
 
cat /logs/bracken;rm -rf /; cat blah.log 

 
which removes all files on the server. In terms of mutation testing parameters that are passed to a server has 
to be mutated. For this purpose a mutation function has to be used that replaces the parameters with 
different shell scripts or commands. The underlying model would be, for example, a specification of the 
expected parameters or arguments, or a description of how to communicate with the server. The mutations 
would be possible deviations of data or communication patters that are critical for security testing. 
 
When considering mutation testing for security testing the question of how to efficiently and effectively 
creating test cases becomes an important issue. In the rest of this section exactly the question of which 
strategy to choose for test case generation in practice is answered in detail. 
 

2.6.1 Introduction 

In this section we introduce model-based mutation testing strategies. In this testing approach the ideas of 
program mutation [21] [31] are applied on the modeling level. The idea is to mutate abstract models of a 
system under test (SUT). Mutation operators implement the mutation process by altering the models 
syntactically. These mutated models represent faulty designs. Then test cases killing the mutated models 
are generated, i.e. we are interested in test cases that can distinguish the original from the mutated model. 
These tests are then executed on the SUT and will detect if a mutated model, i.e. a faulty model, has been 
implemented. 
The advantage of this testing style for security testing is that it is fault-centered. In contrast to cover certain 
states or transitions in a model, we focus on possible flaws in the model. Hence, the generated tests cover 
flaws in the design of a system. The testing strategy is very fine grained. Whatever can be considered a fault 
on the modeling level can be covered by a test case. 
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In the EU FP7 project MOGENTES (www.mogentes.eu) we have taken this challenge and developed a 
model-based mutation testing tool for UML state transition diagrams. We map UML to labeled transition 
systems (LTS). This mapping has been described elsewhere [44][4]. It suffices to point out that this formal 
foundation gives us access to the existing testing theories on LTS. We have chosen Tretmans’s testing 
theory with the conformance relation ioco [76], because it supports partial and non-deterministic models. 
We have developed a test case generator that essentially performs an ioco check. If a mutant does not 
conform to its original model a counter-example test case is generated. The general idea and its extension to 
hybrid system testing has been presented in [5]. The conformance checker itself has been discussed in 
detail in [18]. 
Most recently we have investigated different strategies for detecting for generating a test case once non- 
conformance has been detected. The strategies vary in the number of generated test cases, in the 
generation time and in the shape of the test cases. The latter refers to the fact that some strategies generate 
linear test cases, others adaptive test cases. We have implemented eight such test case selection strategies 
and compared them in two case studies. The first case study is a car alarm system. In addition to this rather 
small example, we analyzed a second case study on testing the control of a wheel-loader bucket arm. The 
results of the car alarm have been published in [6]. The second case study is unpublished. 
Why so many strategies? The aim was to explore different ideas of how to generate the tests and investigate 
how successfully they are in finding bugs. The point is that a minimum set of shortest test cases is not 
necessarily the best strategy to find a bug in an SUT. Therefore, we started with the straightforward but 
costly strategy to cover all paths to the point of non-conformance and evolved to a strategy for generating 
adaptive test cases. Then, we added the ability to check if existing test cases can already kill a mutant. This 
resulted in a combination of random testing and conformance checking. 
In order to compare our six mutation testing strategies to more traditional ways of test case generation, we 
added pure random testing and test case generation with hand-written test purposes to our experiments. The 
latter is implemented via a translation of our intermediate format to the CADP‡ tools. This gives us access to 
the TGV test case generator [41] as well as to model checkers and simplifiers of CADP. 
In our experiments we wanted answers to the following questions: 

• What is the best strategy to select a test case? •  

• Is mutation testing better than random testing? •  

• How efficient is the test case generation? •  

• How severe is the equivalent mutants problem? •  

• Do partial models help? •  

• Does the combination of random testing and mutation testing help? 

• Given a set of faulty implementations. Can we find all known bugs? 
In the next section we present our running example. 

2.6.2 A Car Alarm System  

In order to demonstrate the basic concepts of our test case generation approach, we use a simplified version 
of a car alarm system (CAS). The example is taken from Ford’s automotive demonstrator within the 
MOGENTES project. The following requirements were specified and served as the basis for our UML test 
model: 
R1 - Arming The system is armed 20 seconds after the vehicle is locked and the bonnet, luggage 
compartment, and all doors are closed. 
R2 - Alarm The alarm sounds for 30 seconds if an unauthorized person opens the door, the luggage 
compartment, or the bonnet. The hazard flasher lights will flash for five minutes. 
R3 - Deactivation The anti-theft alarm system can be deactivated at any time, even when the alarm is 
sounding, by unlocking the vehicle from outside. 
As shown in Figure 34, the UML test model resulting from the above stated requirements comprises four 
classes and four signals. The class AlarmSystem is labeled as system under test (SUT) and may receive any 
of the Lock, Unlock, Close, or Open signals. At the same time, the SUT calls methods of the classes 
AlarmArmed, AcousticAlarm, and OpticalAlarm – all of them labeled as being part of the environment. In this 
way, the class diagram specifies the test interface. 
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Figure 34: Test interface of the car alarm system. 

 
Figure 35 shows our CAS state machine diagram. From the state OpenAndUnlocked one can traverse to 
ClosedAndLocked by closing all doors and locking the car. Actions of closing, opening, locking, and 
unlocking are modeled by corresponding signals Close, Open, Lock, and Unlock. As specified in requirement 
R1, the alarm system is armed after 20 seconds in ClosedAndLocked. Upon entry of the Armed state, the 
model calls the method AlarmArmed.SetOn. Upon leaving the state, which can be done by either unlocking 
the car or opening a door, AlarmArmed.SetOff is called. Similarly, when entering the Alarm state, the optical 
and acoustic alarms are enabled. When leaving the alarm state, either via a timeout or via unlocking the car, 
both acoustic and optical alarm are turned off. When leaving the alarm state after a timeout (cf. requirement 
R2) we decided to treat the underspecification in the requirements in the way that the system returns to an 
armed state only in case it receives a close signal. Turning off the acoustic alarm after 30 seconds, as 
specified in requirement R2, is reflected in the time-triggered transition leading to the Flash sub-state of the 
Alarm state. 

 

Figure 35: State machine of the car alarm system. 

Since we want to create test cases that cover particular fault models, we deliberately inject ’bugs’ into the 
specification and then create test cases that identify the differences. Therefore, we use various mutation 
operators. For example, one mutation operator sets guards of transitions to false. Others remove entry 
actions, signal triggers, or change signal events. For the CAS specification, we obtain 76 mutated UML state 
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machines. 19 mutants with a transition guard set to false, 6 mutants with a missing entry action, 12 mutants 
with missing signal triggers, 3 with missing time triggers, and 36 with changed signal events.  
We create first-order mutants, i.e., each mutated state machine covers only one particular mutation (one 
mutation operation in a particular place). Mutation testing relies on two assumptions: (1) competent 
engineers write almost correct code, i.e., faults are typically “one-liners” and (2) there exists a coupling effect 
so that complex errors will be found by test cases that can detect simple errors. 
In the following we discuss the different strategies to kill the mutants. 

2.6.3 Mutation Killing Strategies 

We have implemented a tool chain for checking the input-output conformance of two system models. First 
we translate the UML models to an intermediate model in the style of Back’s Action Systems. Then, our tool 
Ulysses performs a input-output conformance check between the two models. Figure 36 depicts the 
computation steps of our tool. Ulysses expects two labeled action systems as input: (1) a system 
specification AS and (2) a mutated version of the same specification AS

M
. Ulysses explores the action 

systems and interprets the labeled actions as labeled transition system (LTS). Then this LTS is enriched by 
quiescence and subsequently converted into a deterministic automaton. By executing these steps, which are 
depicted in the first box of Figure 2.5.3, we have obtained a so-called suspension automaton. 

 

Figure 36: The computation steps of the conformance checker Ulysses. 

Ulysses generates the suspension automata for both input models AS and AS
M
. Afterwards, the ioco check 

for these two models is performed (see the central box in Figure 36), which generates a product graph from 
which we extract controllable test cases (last box in the Ulysses process). Note that the calculation of the 
suspension automata and the synchronous product calculation modulo ioco (SPioco) are performed on-the-
fly, which means that the automata are only unfolded as required by the conformance check. For details see 
[BWA10].  
In the following we compare eight different test case generation strategies to extract the test cases and 
name them S1 to S8. Generally speaking, S1 to S6 are fault-based approaches, S7 is based on random 
testing, and approach S8 uses test cases that were manually designed. All fault-based approaches use a set 
of 76 faulty models as input to test case generation. While the test cases in approach S1 and S2 have been 
generated via straightforward path search the approaches S3–S6 employ a test case generation algorithm 
that produces branching adaptive test cases for non-deterministic systems. Note that because the car alarm 
system is deterministic, all test cases are linear. In S7 we combine random and adaptive test case 
generation. Table 1 highlights the main differences between the strategies regarding generated test cases. 
 

Table 1: Number of test cases for the CAS generated by our eight different approaches. 
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Strategy S1: Within the first approach, the product graph of the ioco check is first transformed into a tree 
structure with a maximum depth of 10 and a two-times maximum visit per state per trace. After tree unfolding 
the graph, we generate linear test cases for all paths that lead to an unsafe state in the tree. As can be seen 
in the table, this greedy test case generation strategy produces a very large number of tests. Also, 
approximately 75% of the generated tests are duplicates. From the non-duplicate test cases, we could 
exclude another 562 tests that are a complete subsequence of one of the other remaining test cases. Hence, 
about 3500 tests remain. Due to the vast amount of test cases generated by S1, we refrained from executing 
the tests on the CAS implementations. 
 
Strategy S2: The second test case generation strategy directly works on the product graph and extracts only 
one arbitrary linear test per unsafe state. Notice that one mutant may still involve more than one unsafe state 
in the product graph. This time, we could identify 58% of duplicate test cases and another 22 were covered 
as a subsequence in other test cases. It has to be said that we allowed for tests with a maximum length of 14 
in this approach, thus generation times are not directly comparable between S1 and S2. We verified that all 
unique test cases with a length of up to 10 that were produced by this approach were included in the set of 
tests generated by the first approach. 
 
Strategy S3: The third approach is similar to the second one, except that the depth is theoretically 
unbounded since the test case generator applies our adaptive generation algorithm. Therefore, the 
generation time is not comparable with approaches S1 and S2 (but with S4 to S7). 
 
Strategy S4: The fourth strategy builds on S3 but avoids creating test cases for unsafe states in a given 
product graph which are already covered by existing test cases. An unsafe state is the state where the 
mutation (or fault) is activated. In order to check if a certain unsafe state is covered by an existing test case 
we generate a test purpose tp for that unsafe state. Then, the tool checks the existing test cases by 
computing the synchronous product with tp.  
This approach yields one test case per unsafe state. Note however, that generated test cases still can be 
included in other test cases. This depends on the order of processed unsafe states. If we would start with 
deep unsafe states and proceed to shallow ones it is theoretically possible that no generated test case is 
included in another one. 
While the total number of generated test cases decreases to 129 (from 504), the time used to generate them 
increases to 70 minutes (from 23). This is because we compute the check for every unsafe state and in the 
worst case for all test cases generated so far. In effect, S4 checks whether an existing test case already 
covers an unsafe state in the ioco product before creating a new test case. If an unsafe state (there may be 
several per mutated specification) is not covered, a new test case is emitted. 
 
Strategy S5: Strategy S5 also avoids creating duplicate test cases. However, S5 further tries to minimize the 
size of the generated test suite. Before creating test cases for a mutated specification, S5 first checks 
whether any of the previously created test cases is able to kill the mutated specification. Therefore, the 
synchronous parallel execution of the test case with the mutated specification under test is applied. Hence, 
here we are satisfied if one unsafe state is reached, in contrast to S4 where all unsafe states will be covered. 
Therefore S5 rather covers mutants than unsafe states in a mutant. 
 
Strategy S6: Approach S6 is like S5 but instead of starting with an empty test suite, S6 uses one randomly 
generated test case to start with. In effect, S6 is a combination of random (S7) and fault based testing (S5). 
Within Table 1, the maximum depth not put in brackets is the depth of the randomly generated initial test 
case while the figure in brackets is the maximum depth of the additionally generated tests to cover all faulty 
specifications. 
 
Strategy S7: This approach uses a random selection strategy in order to generate test cases. Put differently, 
S7 is not a fault-based test case generation approach and included for evaluation purposes only. 
 
Strategy S8: Finally, we compare our mutation test case generation approach with manually created test 
cases. More precisely, we generated 9 different test purposes by hand and let TGV [JJ05] create test cases. 
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3 out of the 9 test cases check for observable timeouts (time-triggered transitions: 20, 30, 300 sec. delay). 4 
test cases check the entry and exit actions of the states Armed and Alarm. One test case checks for the 
deactivation of the acoustic alarm after the timeout and one more complex test case has a depth of 30 
transitions going once through the state SilentAndOpen to Armed before going to Alarm again and leaving 
after the acoustic alarm deactivation by an unlock event. Hence, each observable event is covered by at 
least one test case. During the creation of the test purposes, we relied on a printout of the UML state 
machine. 
 

2.6.4 Test Case Execution Results for the Car Alarm System 

We applied classical mutation analysis in order to evaluate the effectiveness of our different test suites. For 
this purpose, we have implemented the CAS in Java based on the state machine of Figure 35. In order to 
derive a set of faulty implementations, we used the MuJava tool [50]: in total, MuJava gave us 72 mutated 
implementations. After careful inspection, 8 of these mutated implementations were found to be equivalent to 
the original program, and another set of 26 mutants was found to be equivalent to other mutants - forming 26 
equivalent pairs. Hence, a sum of 38 (72 - 8 - 26) different faulty implementations of the CAS remain. Further 
details are shown in Table 2.  
For each method, the table lists the total number of mutated implementations, the number of mutants that 
turned out to be equivalent to the original implementation, and the number of equivalent pairs of mutated 
implementations. The methods Close, Open, Lock, and Unlock are public ones and handle the equally 
named external events while SetState and the constructor (Constr) are internal methods. From the table, one 
can observe that the mutation on internal methods has a strong effect on the external behavior since there 
are no equivalent mutants for these methods. 

Table 2: Injected faults in the CAS implementation per method. 

 
In the following, we use the 38 unique faulty CAS implementations to evaluate the effectiveness of our 
generated test cases. Of course, all tests were validated on the non-mutated CAS implementation. 
Table 3 gives an overview of the number of survived faulty implementations for each test case generation 
approach. 
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Table 3: Overview of how many faulty SUTs of the CAS survived the generated test cases. 

 
 

As can be seen from the table, the approaches S3, S4, and S6 were able to reveal all faults. The table also 
proves that the minimization algorithm applied in approach S5 reduces the fault-detection capabilities. 
Despite random testing (S7) did not find all faulty implementations, it proved quite effective in our setting. It 
has to be noted, however, that we allowed for an appropriate depth of the random test cases. Summing up, 
S5 and S7 still have a fault detection rate of 97%. The reason for the bad performance of S2 is the fact that 
the two surviving faulty implementations need tests with a depth of more than 14 interactions to be revealed 
and S2’s tests are restricted to a depth ≤ 14. 
The last column shows the results of running the manually designed tests (S8). Overall, 25 mutants were 
killed which results in a detection rate of 66%. Clearly, the figures show that in order to have a meaningful 
test suite, more (diverse) test cases have to be generated. Partly, this lack of diverse test cases is based on 
the deterministic test selection behavior of TGV: all TGV based tests have almost the same test sequence 
from OpenAndUnlocked to ClosedAndLocked, although alternative paths are possible. 
Often, coverage metrics on the implementation’s source code serve as a quality measure to describe the 
adequacy of a test suite. Therefore, we have measured the coverage on the implementation in terms of 
basic block coverage. The approaches S2 - S7 achieve a coverage of 99%, whereas S8 (TGV) only results 
in a basic block coverage of 88%. By comparing the last two rows of Table 3, it becomes obvious that a high 
code coverage does not automatically guarantee high fault detection rates, which we aim for. 
In summing up, the results show that our approaches are powerful in covering the implementation’s source 
code and more importantly in detecting faults. However, the depth of our conformance analysis is critical as 
too less depth results in missing test cases and, in this example, in undetected faults. The results also show 
that the 3500 test cases of the first approach were by far too many: for the given 
 

2.6.5 A Second Experiment: a Wheel Loader 

While the Car Alarm System provided us with valuable insights during the tool development and the initial 
tool-evaluation phase we consider it as an example too small for generating representative results. 
In a second experiment, therefore, we used the much more complex model of an ECU (Electronic Control 
Unit) controlling the arm and the bucket of a wheel loader.  
The principle system architecture of this demonstrator is as follows. The ECU receives signals from an 
ISOBUS (CAN) network and controls the actuators of the bucket/arm as well as a TFT display that shows 
important (graphical) information about the current status of the implementation. Inputs to the ECU come 
from, e.g., a joystick that is installed on the wheel loader. The ECU is responsible for setting the current that 
flows through the electromagnets and in turn controls some valves on the actuators on the arm/bucket of the 
wheel loader. 
Important behaviors that had to be tested were bus initialization (address claim), error management, and 
general timing related properties. It has to be said that this model proved to be a challenge as different low-
level bus-related events had to be modeled in detail (i.e., integer- parameterized events) while at the same 
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time it also showed a high degree of parallelism (i.e., interleavings of event sequences) and complex time-
out behavior.  
The OOAS model (translation from UML model) for the bucket control of the wheel loader consists of 137 
actions. In order to cope with the complexity of our fault-based strategies on this use case, a separation into 
several partial models had to be done. The splitting involved partitioning the input values coming from the 
joystick into equivalence classes. The first partial model is called EQC. It only uses 11 different values per 
axis each representing one equivalence class. Note that one of the 11 values represents an error state of the 
joystick. In principle this enables the error handling mechanisms of the model. Nevertheless, due to the 
complexity of this model we cannot explore the model up to the necessary depth to observe any effect of the 
error handling. 
In order to reach the parts of the model, where the effects concerning the error management can be 
observed, a second sub-model called X error has been created. It focuses solely on error handling and is 
simplified even more. Instead of considering 11 different values per axis, in this model one axis has a 
constant value. The other axis is limited to a set of three possible values. 

Table 4: Number of test cases for both wheel loader models generated by strategy S5. 

 
Test case generation. Table 4 presents the most important metrics describing test case generation with S5 
for these two versions of the wheel loader. The EQC model could be explored up to a depth of 13. There 
were 220 mutated models. Ten of them were triggering a new test case, resulting in 217 test cases. These 
test cases were able to kill 79 of the mutated models in addition to the ten mutants they were generated 
from, i.e., 89 of the mutated models were killed in total. The remaining 131 mutated models had to be 
considered equivalent up to the exploration depth. To generate one of the 217 test cases took 20 minutes on 
average. The average time needed for killing one of the non-equivalent mutants with an already existing test 
case took about 1.7 minutes on average. For equivalent mutants, the whole ioco check up to the depth of 13 
took 33 minutes. The respective numbers for the X_error model are listed in the rightmost column of Table 4. 
The data in Table 4 shows that although we used simplified models, the generation times with strategy S5 
for one distinguishing test case still exceed hours if the non-conformance between the original and the 
mutant cannot be identified within a certain depth (13 and 45 in our experiments). That is, we suffer from the 
equivalent mutants problem that manifests itself in a state space explosion problem. Hence, the purely fault-
based strategy (S5) is not practically for the wheel loader use case. Our first experiments with the CAS 
already indicated that S5 is not the most efficient test case generation strategy. 
For this reason, we generated various random test suites for both versions of the wheel loader model. They 
vary in their size and also in the depth of the contained test cases. Table 5 lists the combinations of depth 
and number of test cases. We created four test suites per model version (EQC and X_error) called Rand1, 
Rand2, Rand3, and Rand4. Table 5 also gives information about the generation times. Compared to test 
case generation with S5 (see Table 4), random test case generation is fast. 
 

Table 5: Number of random test cases for both wheel loader models (S7). 
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Finally, we applied our strategy S6 to combine random and fault-based test case generation. More precisely, 
we chose the random test set Rand1 as a starting test set for S6 for both versions of the wheel loader model. 
Table 6 presents the associated data: As with S5 (see Table 4), there were 220 mutants for the EQC model. 
We started with the random test suite Rand1. Hence there were 256 random test cases each having a depth 
of 50 interactions. Again, we explored the EQC models up to a depth of 13. There were no additional test 
cases generated by our fault-based approach, i.e., the final test set for the EQC model resulting from S6 
consists solely of the random test cases. These random tests were able to kill 160 of the 220 mutated EQC 
models. Hence, 60 mutated models remained to be equivalent up to the depth of 13. On average, it took 
about 4 minutes to kill a mutated model with a test case and about 3 hours and 20 minutes (200 minutes) to 
identify a mutant to be equivalent. With the purely fault-based approach S5 (see Table 4), this time was 
lower (33 minutes) because there were less test cases that tried to kill the mutant before starting the ioco 
check. Note that the computation times do not consider the generation of the random test suite. 
For the X_error model, we had a total of 219 mutated models for test case generation with S5 (see Table 4). 
Due to the longsome computation times, we chose 82 mutants for test case generation with S6. Again, the 
initial random test set was Rand1 (256 test cases of depth 50). As with S5, we explored the model up to 
depth 45. For the X_error model, the fault-based approach yielded 4 test cases in addition to the random 
tests generated from 3 mutated models. The test set consisting of random and so far fault-based generated 
tests were able to kill 46 mutated models. Hence, in total 49 mutants were killed and 36 were found to be 
equivalent up to our maximum depth. On average, it took almost 3.75 hours (226 minutes) to generate one 
of the 4 fault-based test cases. To kill one mutated model with any of the existing test cases took almost half 
an hour and to identify a mutant to be equivalent took about 5.75 hours (349 minutes) on average. Again, 
note that the computation times do not consider the generation of the random test suite and that equivalent 
in this context means equivalent up to our maximum exploration depths. 

Table 6: Number of test cases for both models of the wheel leader generated by strategy S6. 

 
 



 

 
 
 

Concepts for Model-Based Security 
Testing 

 
Deliverable ID: D2.WP2 

 

 

Page    :  90 of 134 
 

 

Version:  1.0 
Date     :  26.09.2011 

 

Status : Final 
Confid : Public 

 

 

 Copyright DIAMONDS Consortium 

Test case execution. Like in the first case study we have implemented the ECU in Java. The 
implementation consists of approximately 450 lines of code. Again we used the MuJava tool, which gave us 
1349 mutated implementations. Considering this high amount of mutants we decided to skip the analysis 
whether some of the mutants are equivalent either to other mutants or to the original. 
Table 7 gives an overview of the percentage of killed mutated implementations for each of our twelve test 
suites: S5, S7 with Rand1, Rand2, Rand3, and Rand4, and S6 (each for EQC and X error). Additionally, we 
computed the killing abilities for our strategies when combining the test sets from both model versions (see 
rightmost column). Generally, the random test sets generated from the EQC model achieve a relatively good 
killing rate compared to the other test sets not involving random test cases. Another observation is that the 
combination of our partial models makes sense, since all combinations perform better than the two separate 
test suites from a single model. S6 did not yield additional fault-based test cases for the EQC model and 
hence did not improve the killing rate of S7 Rand1. However, for the X error model, S6 generated four 
additional test cases, which improved the killing rate by 3.6 %. The highest killing rate of 78.9 % was 
achieved by the combination of the two test sets generated from S6 (last row). It combines random testing, 
fault-based test case generation and uses both versions of the model. Note that the killing rates in this table 
were not corrected by removing truly equivalent mutants. 
 

Table 7: Killing rates of generated test cases per strategy. 

 
 

2.6.6 Discussion 

In the following we discuss the results of our two experiments. We structure our discussion by our original 
questions as stated in Section 2.5.1. 
 
What is the best strategy to select a test case? The small CAS case study served to exclude strategies 
that would not scale to large models. S1 had to be given up immediately, because it resulted in too many test 
cases. S2 has a low detection rate with a high number of generated test cases. Furthermore, it produces 
only linear test cases. The adaptive test cases of S3 have a good killing rate, but the number of test cases is 
too high. S4 reduces this number and keeps the high killing rate, but the generation time increased. In order 
to decrease generation time S5 was developed. However, the killing rate suffered. Hence, S4 is a good 
candidate for small models like the CAS. However, for large models it is hopelessly slow. Therefore, we 
chose S5 as a suitable strategy and combined it with random testing resulting in S6. 
Both case studies show that pure random testing (S7) is doing fine. However, by adding the test cases of an 
exact conformance analysis still increases the killing rate. Hence, from a killing rate perspective the 
combined selection strategy S6 performed best. 
 
Is mutation testing better than random testing? The answer depends on the requirements. 
Random test case generation is fast and quickly reaches a high killing rate. Hence, these tests are well 
suited during the development of the system. We used them to program our Java implementation of the 
bucket controller by test-driven development. 
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However, random testing results in many test cases and in some environments this is perceived as too 
many. For example, in embedded systems testing with timers causing long waiting times, test execution is 
expensive. Here redundant tests should be avoided. 
In relation to mutation testing, the randomly generated tests have no relation to the fault models to be 
covered. Hence, it is not easy to decide how many random tests are needed. Therefore, we developed our 
combined approach S6, where we first generate a set of random tests that will find the easy bugs. Then for 
the more subtle bugs the still missing test cases are generated. 
The pure mutation approaches S4 or S5 would be better in theory, but due to the complexity of their 
algorithms we are not able to generate deep enough tests in a reasonable amount of time. This brings us to 
our next question. 
 
How efficient is the test case generation? The bucket controller case study shows that compared to 
random testing the mutation testing strategy is very inefficient. The reasons is the conformance checking 
itself and the number of mutants to be analyzed. 
The conformance check has exponential run-time. Hence, the depth to be explored is limited. In case a non-
conformance is detected the problem is not that severe. The average time to generate a test case that kills a 
mutant is 20 (EQC model) or 35 minutes (X_error model). However, if the mutant is conform up to the 
maximum depths, then it can take hours before the next mutant can be analyzed. Hence, we suffer from the 
equivalent mutants problem during test case generation. 
 
How severe is the equivalent mutants problem? From the discussion of the previous question we 
see that the problem is severe. With an equivalent mutant we have to perform a full equivalence check up to 
a certain depth. Since the problem is NP-complete our exploration depth is limited. 
 
Do partial models help? Yes! For testing the error management of the bucket controller, we developed a 
partial model (X_error) that quickly reaches the error handling functionality. With this model we could explore 
deeper (depth 45 vs. 13) and could generate additional test cases for the error handling functionality. The 
combination of these tests results in higher killing rates. 
The same effect can be noticed in the pure random testing strategy R7. Combining the random tests from 
both models increases the overall killing rate. 
 
Does the combination of random testing and mutation testing help? Certainly! The data shows that 
the combined approach S6 has a higher killing rate than the pure strategies S5 and S7. Although, the killing 
rate only increases slightly, the combined approach S6 provides more trust in the testing set: The qualitative 
advantage of S6 is that it gives a guarantee that all modeled faults are being covered. What the random tests 
do not cover, the conformance checker will provide. 
However, the run-time analysis shows that for an equivalent mutant the additional random tests increase the 
test case generation time. The reason is that in R6 first all random tests try to kill the equivalent mutant, then 
the equivalence check has to be started. This is worse than doing only equivalence checking as in R5. 
 
Given a set of faulty implementations. Can we find all known bugs? No. In the car alarm system we 
could not kill one non-equivalent implementation mutant. This was a very subtle fault in a Java switch-
statement. It seems that the fault models we were testing for were not fine enough to detect this bug. The 
fault models are defined by the level-of-abstraction of the model and the involved mutation operators. If a 
fault cannot be represented by our fault models, then we have to rely on the coupling effect. In this case it 
did not help. 
Due to the large number of implementation mutants of the bucket controller we did not analyze which 
implementation mutants were actually equivalent. Hence, we do not know if we killed all non-equivalent 
mutants and found all bugs. However, we do know that certain strategies find more bugs than others, and 
this was the scope of this study. 
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2.7 UMLSEC  

 
In this section we discuss how UMLsec and UMLsec-inspired elements can be added to the system to aid 
the purpose of deriving security test cases. We use a three-tier-web-application – much resembling the iTrust 
case study – as a running example to illustrate how this procedure can carry over from system design over 
risk analysis to generation and selection of test cases. 

2.7.1 Running Example: Three-Tier Web Application 

As a running example of how our methodology carries through the various phases of development, we a 
standard three-tier web application. This is a somewhat generalized instance of the iTrust case study. The 
topology of the typical components is depicted in Figure 37.  

 

Figure 37: Topology of a three-tier Web application. 

On the client side a browser is running that shows the web pages and accepts user input. In doing this 
browser can interpret Javascript code and hence implement some of the application logic. However, the 
client cannot store more information than, say, an identifying cookie. One has to also bear in mind that no 
security relevant logic may run at the client, since the browser is under full control of the user and may 
diverge in arbitrary ways from the intended behaviour. The client is connected by an unprotected and 
possibly by a SSL-secure internet link with the webserver. In between we typically see a company firewall 
that actually connects to the webserver via a LAN line. The webserver dispatches all requests to one of 
several application servers, which in turn are all connected to one, possibly transparently duplicated 
database server. 
To discuss how two sample attack patterns can be addressed with our procedure, we present a subset of the 
risk analysis of this scenario. The attack patterns are two of the most prominent ones, SQL injection (Figure 
38) and cross site scripting (Figure 39). 
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Figure 38: SQL injection risk analysis. 

 

Figure 39: Cross site scripting risk analysis. 

On one hand this is a suitable case study to demonstrate a sample a concrete example of our procedure. On 
the other we show in section 2.7.7 that we do not lose any generality and discuss how the same can be 
applied to other cases especially the Giesecke & Devrient case study. 
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2.7.2 From CORAS Risk Analysis to UMLsec Models  

UMLSec is a UML profile defined by [43] to facilitate the annotation of UML system models with security-
relevant information. The key idea is to declare security properties at design time in the system model, to 
allow both for model checking and test case derivation. It comprises a set of stereotypes that can be applied 
to various UML elements, along with tags and values to refine those stereotypes. 

However, while UMLSec-enriched system models provide the appropriate information to ensure that the 
system built meets its security requirements, the issue of potential weaknesses and resulting vulnerabilities 
is hardly addressed. Therefore, to link a risk model with a UMLSec-enriched modeled the additional 
information must be stored either separately in a specific model or via a yet-to-be defined profile that would 
be applied on the system model. The purpose of that additional information is to label elements of the 
system architecture that are likely to introduce new weaknesses into the system or that require particular 
protection mechanisms. For each of those identified vulnerabilities, it will have to be ensured that proper 
treatment measures are elaborated and included in the system model. Additionally, it should be ensured that 
those treatment measures are testable, so that they will be verified on the implemented system. 

It should be kept in mind that the risk analysis and the associate weaknesses analysis should be performed 
separately at the appropriate level of abstraction, depending of the project’s development phase.  

- Logical risk analysis shall be performed based on the system’s logical architecture. Therefore the 
resulting risks may remain rather abstract and also lead to abstract risks or groups thereof. 

- Technical risk analysis shall be performed based on the system’s technical architecture and the 
resulting risks will be more specific and likely to be derived into more concrete test requirements and 
eventually to test cases. 

Process implications 

 



 

 
 
 

Concepts for Model-Based Security 
Testing 

 
Deliverable ID: D2.WP2 

 

 

Page    :  95 of 134 
 

 

Version:  1.0 
Date     :  26.09.2011 

 

Status : Final 
Confid : Public 

 

 

 Copyright DIAMONDS Consortium 

2.7.3 Generating Test Cases from the Enriched System Model 

UMLsec offers UML profile element to specify security properties on several levels as depicted in (Figure 
40), namely: 

• Requirements/policies, e.g. Fair exchange, Secrecy, Guarded Access 

• Link Types, e.g. LAN, Encrypted, Internet 

• Node Types, e.g. Smart Card, POS device 

• Attributes, e.g. high, critical 
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Figure 40: UMLsec stereotypes [67]. 

The elements are well suited and quite exhaustive to do model checking on the cryptographic security of 
systems. For security testing however we come to the conclusion that UMLsec must further enhanced to 
allow for leveraging the system model to derive test cases. 
Our initial approach is to specify and track known vulnerabilities, i.e. potential weaknesses in the system 
design. For instance, to address attacks that follow the SQL injection pattern, we propose to add the 
stereotype «user provided» to mark and track any content on its way through the system. This is especially 
suitable for parameter of interfaces, so parameters would only be typed as String but rather as 
«user provided» string. 
This yields useful information for the test generation phase: tests are concerned with injecting SQL codes 
can be guided precisely to the spots where user input is processed. 
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2.7.4 Using UMLsec Stereotypes for Security Testing 

In its UML profile UMLsec specifies different stereotypes that are used to define security requirements for a 
model. These stereotypes together with tags are used to design a system that enforces a given security 
policy [43]. It can then be checked if a system model fulfils its security requirements given by the stereotypes 
and tags. This is the domain of model checking. 
For the purpose of security testing some of these stereotypes and their corresponding tags can be employed 
to define functional and non-functional security test cases. These security test cases can be used to 
determine if the security requirements are fulfilled not only by the system but by its implementation, too. 
There are two stereotypes and a tag that seem to be convenient for security testing: fair exchange, 
encrypted and high. 
Fair exchange is used for activity diagrams and is related to the sale of goods. It requires for a certain good 
after passing a start node in the activity diagram a corresponding stop node is eventually reached [43], p. 55. 
The start and stop nodes are activities that are set in the corresponding tags start and stop. Jürjens [43], p. 
56 says that the requirement given by the stereotype fair exchange “cannot be ensured for systems which an 
attacker can stop completely”. This could happen during a denial of service attack. Therefore, robustness 
tests e. g. fuzz testing can be used to show if this requirement is achieved by the implementation or if such 
an attack can be performed. 
The stereotype encrypted says if related to a communication link in a deployment diagram the data sent 
along this link must be secured by cryptographic algorithms. Therefore a functional security test case can be 
derived that tests whether all data on this communication link are ciphered. To achieve this, more information 
for the test case is needed: the required cryptographic algorithm and the used keys. To extend the UMLsec 
profile with a new tag cryptographic algorithm is a possibility to make this information available from the 
system model. Having this information all components connected by the communication link can be tested 
regarding encryption using the functional security test case. 
The tag high denotes attributes and operations to be high and can constraint the data flow when used 
together with the stereotype no down-flow. The next section describes how the tag high can be extended to 
generate test cases from state chart diagrams. 

2.7.5 Exploiting UMLsec Enriched State Charts to Generate Test Cases 

When creating a UMLsec model, the behaviour of a system can be specified using the different behavioural 
models provided by UML: activity diagrams, sequence diagrams and state machine diagrams. State 
machines are used here for generating test cases. To do so the tag specified by the UMLsec model is used 
and extended. The tag high can be used in conjunction with the stereotype no down-flow. It is used to 
declare attributes and operations as high. Operations declared as high may only rely on attributes that are 
also high while operations not declared as high may not access attributes declared as high. Hence it is used 
to separate sensitive data and access to it from non-sensitive data. No down-flow in combination with the tag 
high requires the model to respect this separation when specifying behaviour and constraints the data flow. 

For test generation we can also use the tag high. Understanding it in a slightly different way may help for this 
task. Originally high is understood in the context of the stereotype no down-flow to separate data with 
different sensitiveness levels. To generate test cases from UMLsec state machines we need to declare not 
only attributes and operations as high but states, too. The idea is that certain functions may only be used 
after e. g. an authentication. So performing a specific operation is only allowed when reaching a specific 
state. Consider Figure 41: Simple state machine 

 showing a simple state machine for making transfer orders on a banking server. To do so an authentication 
is required after that a transfer order can be created. By authentication the state changes from “not 
authenticated” to “authenticated”.  
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Figure 41: Simple state machine 

Because the operation createTransferOrder may only be called in state authenticated it can be 
considered to be high. But this declaration itself is not useful. We need more information when it is allowed to 
call operations declared as high. To achieve this we also declare the state “authenticated” as high and 
require that high operations may only be called in high states. This results in the state machine shown in 
Figure 42: State machine (high operations and states are red) where high elements are red coloured. In 
contrast to the use of the tag high in combination with the stereotype no down-flow it does not constrain the 
data flow but the control flow regarding security aspects. 

 

Figure 42: State machine (high operations and states are red) 

The states to be high can be declared so by the system engineer. Another possibility is to determine the 
states to be high automatically. It can be said that after the execution of a certain operation all states are 
high and after the execution of another operation all states are non-high. If that information of operations is 
given, the states to be high and to be non-high can be determined automatically by traversing the state 
graph. After passing a transition with such an operation, the successive states are changed to high 
respectively to non-high. Obvious candidates for operations with those properties are login and logout 

operations as shown in Figure 42: State machine (high operations and states are red). They grant and 
revoke permissions to a system. Usually this information is only informally included in those operations but 
when giving it formally, the states as well as the operations to be high can be automatically determined. 
Following this approach a state is high if it is on a path of transitions that contains an operation that grants 
permissions before on that path and an operation that revokes permissions after on that path. 
An operation is high if it is labelled only on transitions between high states. Operations that grant 
permissions when executed lead from a non-high to a high state while operations that revoke permissions 
lead from high to non-high states.. 
This state machine diagram can then be used for security testing. A corresponding test model can be 
generated by modifying the state machine diagram such that non-high operations are annotated on 
transitions that do not connect high states. In the example shown in Figure 42: State machine (high 
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operations and states are red) the operation createTransferOrder would be annotated on a new 

transition on the “not authenticated” as shown in Figure 43: State machine mutated for security testing. 

 

Figure 43: State machine mutated for security testing 

Test cases may be generated by extracting paths from the state machine that contain transitions with high 
operations on non-high states. 
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2.7.6 Test Case Selection and Prioritization 

In order to obtain a reasonable test case selection and prioritization the information of threats given by the 
UMLsec model is augmented with information from a risk model designed following the CORAS method 
[D1.WP2 4.4.3, D1.WP3 9.2]. 
The CORAS method is a risk modeling approach to determine among others threats, for instance a hacker 
that may cause an unwanted incident, maybe overwrite entries of a database. These threats are related to 
unwanted incidents through threat scenarios, for instance “external firewall is turned off” or “hacker 
accesses database”. Two kinds of relations exist: Initiates-Relations lead from a threat to a threat scenario 
or to an unwanted incident. Leads-To-Relations lead from a threat scenario or an unwanted incident to a 
threat scenario or an unwanted incident. The relations, threat scenarios and unwanted incidents can be 
annotated with likelihoods in terms of probabilities or frequencies. The relations leading from a threat or a 
threat scenario to another threat scenario or unwanted incident can be amended by one or more 
vulnerabilities. 
A simple CORAS risk model is shown in Figure 44. It consists of two deliberate human threats, a “hacker” 
and a “script kiddy”. These threats can use the vulnerability “SQL injection” to access a database without 
authorization. This is denoted by the unlocked padlock and the two relations, one leading from the threat 
“hacker” to the threat scenario “DB is accessible for unauthorized people” and another leading from the 
threat “script kiddy” to the same threat scenario. The relation from the threat scenario to the unwanted 
incident “Database entries are modified by unauthorized people” is another one. Except the threats and the 
vulnerability, all elements have probability annotations saying how large the risk that the annotated element 
occurs is.  

 

Figure 44: Simple CORAS risk model containing two threats, one vulnerability, one threat scenario 
and one unwanted incident 

 
The idea is to map some of the elements of the CORAS risk model to the UMLsec system model in order to 
obtain risk information from the system model. These risk information can then be used for selection of 
components to be tested and make a prioritization of the selected components. 
The CORAS risk model is used for the following purposes: 

• Determination of hazard of system components. For this purpose the vulnerabilities mentioned in 
the risk model are mapped to components of the UMLsec system model. This mapping is manually 
done by the risk analyst. To get a probability for each vulnerability, each relation should be 
annotated with only one vulnerability. When a vulnerability itself is annotated on more than one 
relation, as above in Figure 44, the highest probability is used for that vulnerability. 

• Rating the UMLsec attacker types. Considering only one threat in the risk model and removing all 
relations, threat scenarios, vulnerabilities and unwanted incidents that are not reachable from the 
considered threat, its dangerousness can be quantified. This is done by composing all unwanted 
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incidents and recalculating the probabilities according to the rules presented in [48], chapter 13. The 
CORAS threats must be mappable to the UMLsec attacker types. 

 
The information used for test selection and prioritization is generated along the following procedure. 

1. In the first step, all vulnerabilities have to be mapped to UMLsec system components. This is 
the task of the risk analyst in cooperation with the systems engineer. When mapping a vulnerability 
to a system component, the probability of the relation the vulnerability is mapped to the system 
component, too. There are two special cases: 

� If a vulnerability is related to more than one Initiates- or Leads-To-Relation with different 
values of likelihood (e. g. as in Figure 44 for the vulnerability “SQL injection”), the highest 
value of likelihood should be mapped to get the highest risk that this vulnerability is 
exploited. 

� If a vulnerability can be mapped to more than one component of the UMLsec model, the 
probability of the vulnerability should be mapped to each component without decreasing it. 

The hazard of a system component in respect to its vulnerabilities can be determined by stepwise 
calculating the probabilities of two vulnerabilities in respect to its statistically independence or 
mutually exclusiveness. 

2. Next, all CORAS threats are to be mapped to the UMLsec attacker type definitions. When 
mapping a CORAS threat to a UMLsec attacker type, its dangerousness should be calculated. As 
discussed above, this can be done by removing all model elements from the risk model that are not 
reachable from the specific CORAS threat. After that all unwanted incidents can be composed and 
the accumulated likelihood for the composition of the threat can be calculated according to the rules 
in [CORAS], chapter 13. As the threats are mapped to the UMLsec attacker types, its probabilities 
reflecting its dangerousness are mapped to the attacker types, too. 

3. Capability boundaries of the individual attacker types has to be determined using the UMLsec 
component diagram. In UMLsec, each attacker has capabilities called threats regarding the 
different link types in a UMLsec component diagrams. For instance, an attacker type may read and 
write to links with the UMLsec stereotype «Internet», but only read to links with the stereotype 
«encrypted». If a component has two links where an attacker type has different capabilities, the 
attacker can obtain possibly more rights when successfully performing an attack to that component. 
Following the idea of trust boundaries ([70], p. 60) these capability boundaries are determined by 
consider each pair of link of all components and the attacker type definitions. If an attacker type 
actually has different capabilities on different links of the same component, this component is added 
to an attacker specific list of components that can be used by an attacker to get more privileges. 

 
As a result of these steps, for each UMLsec attacker type there is a list of components that can be used to 
get higher privileges in a network by this attacker. These lists do not necessarily include all components of 
the system model. Because the hazard of each component is determined by its vulnerabilities and their 
probabilities, the components can be sorted by this hazard for test selection and prioritization. This is also 
possible for the attacker types because we calculated their dangerousness using the probabilities of the 
unwanted incidents they can cause. 
So we can use two dimensions for test case selection and prioritization: the dangerousness of the attacker 
types and the hazard of each system component. 
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2.7.7 Mapping to Other Case Studies: Giesecke und Devrient 

 
The high level architecture of the banking case study resembles to a high degree the topology depicted in 
Figure 37. Here, too clients, webservers and database are also connected with a varying link properties and 
separated by a firewall. In that sense test cases may be derived from the UMLsec enriched system 
specification just as well as in the generalized iTrust case. However there are significant differences that 
must be addressed when performing the actual derivation: 

• The banking scenario is much more closed in the sense that hardly any physically outside attackers 
have access at all to the system. Instead, risk analysis and test case derivation must focus more on 
maliciously incentivized employees than on the common attacker somewhere on the web or at an 
ISP site. 

• The databases are connected on the client side rather than behind an application server. This must 
be considered when dealing with database related security tests. 

For other case study, especially the Dornier Consulting instance, the over all architecture may be completely 
different, hence, applicability of this approach must be carefully evaluated on a case by case basis. Since 
UMLsec can, however, easily be extended further, it is very likely that the procedure can be adapted. 

2.8 FUZZING UML SEQUENCE DIAGRAMS 

2.8.1 Introduction 

“Fuzzing is a security testing approach based on injecting invalid or random inputs into a program in order to 
obtain an unexpected behaviour and identify errors and potential vulnerabilities.” [17]. The aim is to find 
deviations of the SUT to its specification that leads to vulnerabilities because invalid input is not rejected but 
instead processed by the SUT. Such deviations may lead to undefined states of the SUT and can be 
exploited by an attacker for example to successfully perform a denial-of-service attack because the SUT is 
crashing or hanging. 
The origin of fuzzing dated from Barton Miller, Lars Fredriksen and Bryan So [54]. They used UNIX 
command line tools over a modem connection in a stormy night. The stormy weather affected the phone line 
and so there were frequent spurious characters when using these tools. To the surprise of the authors these 
spurious characters caused the tools to crash and so they investigated the impact of randomly generated 
input values on UNIX command line utilities and doing so caused many tools to crash and/or hang. 
The traditional approach of data fuzzing is generating invalid input data the SUT is fed with. This is a 
successful applied method to find vulnerabilities [55][27]. 
There are different categories of fuzzers:  

1. Random-based fuzzers generate input data totally random. They nearly know nothing of the 
protocol of the SUT. Because of the usually huge size of the input space mostly invalid input data is 
generated [70], p. 27. 

2. Template-based fuzzers use existing, valid traces (network traces, files …) and modify them at 
some locations to generate invalid input data [76], p. 49. 

3. Block-based fuzzers break protocol messages down into static and variable parts and generate 
fuzzed input data only for the variable parts. They know about field length values and checksum 
fields and can generate more sophisticated invalid input data [70], p. 27. 

4. Dynamic Generation/Evolution-based fuzzers learn the protocol of the SUT from feeding the SUT 
with data and interpreting its responses using evolutionary algorithms or active learning [20][35]. 

5. Model-based fuzzers have full knowledge of the protocol used to communicate with the SUT. They 
use their protocol knowledge to fuzz data only in certain situations that can be reached by simulating 
the model [72]. 
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Following the traditional approach only input data is fuzzed. Block-based fuzzers use their knowledge about 
the message structure to generate new messages containing invalid data among valid data. If a message 
contains both valid and invalid portions of data, this amalgam is often referred to as semi-valid data 
[61],[70] p. 24, [27],[20]. A model can be used to generate a valid sequence of messages where just data of 
a few messages at certain points within the sequence are fuzzed. 
Behaviour fuzzing complements this approach by not fuzzing only input data of messages but the 
appearance and order of messages, too. It changes the valid sequence of messages to an invalid sequence 
by rearranging messages, repeating and dropping them or just changing the type of message. 
Behaviour fuzzing differs from mutation testing such that mutation testing in the sense of code fault injection 
modifies the behaviour of the SUT to simulate various situations that are difficult to test [70] p. 90,[23]. Hence 
mutation testing is a white box approach. In contrast (behaviour) fuzzing modifies the use of a SUT such that 
it is used in an invalid manner. Because the implementation of the SUT does not have to be known 
behaviour fuzzing is a black box approach. 
The motivation for the idea of fuzzing behaviour is that vulnerabilities cannot only be revealed when invalid 
input data is accepted and processed but also when invalid sequences of messages are accepted and 
processed. For example a download may only be started after successful authentication but the download is 
started (by a faulty SUT) even without an authentication. In this situation the vulnerability can be exploited 
using valid input data but invalid behaviour when omitting the authentication.  
A good real-world example is given in [70] where a vulnerability in Apache web server was found by 
repeating the host header in a HTTP request. This vulnerability cannot be found by fuzzing the input data. 
Data fuzzing would only change the parameter of the host message while behaviour fuzzing would change 
the number of host messages sent to the web server. Only an invalid number of host messages generated 
by behaviour fuzzing can reveal this denial of service vulnerability. 

2.8.2 Related Work 

Fuzzing is a research topic for years. There are several approaches to optimize the fuzzing process in order 
to generate test data that intrudes deeper in the system under test. The general problem of randomly fuzzed 
input data is that these data are invalid in a wide range. Because of that the input data will be rejected by the 
SUT before getting the chance to get deeper in the SUT [15][81][27][15]. Hence model-based fuzzing is a 
promising approach. Because of the knowledge of the protocol, model-based fuzzing makes it possible to 
get deeper in the SUT by fuzzing after passing a certain point in a complex protocol and generating invalid 
data only at a few points of message parameters. The model can be created by the system engineer or the 
tester or it can be inferred by investigating traces or using learning algorithms. There are many possibilities 
what can be used as a model. Context-free grammars are widely used as a model for protocol messages 
[15][74][2][81]. As a model for the flow of messages state machines can be employed (as in [15][2][16]) or 
sequence diagrams that will be later discussed. 
Explicit Behaviour Fuzzing 
In the PROTOS project Security Testing of Protocol Implementations [74], Kaksonen, Laakso und Takanen 
uses BNF as a context-free grammar to describe the message exchange between a client and a server 
consisting of a request and a response, as well as the syntactical structure of the request and the response 
message. The context-free grammar acts as a model of the protocol. In the first step, they replace some 
rules by explicit valid values. In a second step they insert exceptional elements into the rules of the grammar, 
e. g. artificial long or invalid field values. In the third step they define test cases by specifying sequences of 
rules to generate test data. Behaviour fuzzing is mentioned in [74] where the application of mutations was 
not constrained to the syntax of individual messages but also applied to “the order and the type of messages 
exchanged” [74]. Understanding behaviour fuzzing in that way random-based fuzzing implicitly performs 
behaviour fuzzing. Because the protocol is unknown randomly generated data can be messages and data. 
Hence in addition to data fuzzing also behaviour fuzzing is done – but in a random way. 
For testing the IPv6 neighbour Discovery Protocol Becker et al. in [16] used a finite state machine as a 
behavioural model of the protocol and decomposed the messages of the Neighbour Discovery Protocol. 
They applied several fuzzing strategies, e. g. changing field values or duplicating fields like checksums. For 
applying these strategies they defined a second finite state machine as a strategic model. The combine this 
model with reinforcement learning defining three different reward functions. The first reward function is based 
on the entropy and the power of a message. The entropy of a message is defined by the distribution of 
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different function calls and the power is the amount of functions called while processing a message. The 
second reward function simply consists of the information whether an error at the SUT was monitored or not. 
The third reward function consists of the information whether corrupt or delayed messages were monitored. 
In [16] the different fuzzing strategies mentioned by the authors are not constrained to fuzzing input data by 
deleting, inserting or modifying the values of fields but supplemented by the strategies of inserting, repeating 
and dropping of messages that is behaviour fuzzing. Similar strategies are introduced in [35] where the type 
of individual messages is fuzzed as well as messages are reordered. 
Banks et al. describe in [15] a tool called SNOOZE for developing stateful network protocol fuzzers. The tool 
reads an XML-based protocol specification containing among other things the syntax of messages and a 
state machine representing the flow of messages. A Fault Injector component allows modifying integer and 
string fields to generate invalid messages. SNOOZE can be used to develop individual fuzzers and provides 
several primitives to for example fuzz several values depending of their type. Among that primitives there are 
function to get valid messages depending on the state of a session depending on the used protocol but also 
primitives to get invalid messages. Thus SNOOZE enables fuzzing both data and behaviour. 
The most explicit approach of fuzzing behaviour is found in [70]. Kitagawa, Hanaoka and Kono propose to 
change the order of messages additional to invalidating the input data to find vulnerabilities. The change of a 
message depends on a state of a protocol dependent state machine written in a language called tsfrule. But 
they do not describe in which way message order is changed to make it invalid. 
 
Implicit Behaviour Fuzzing 
In [81] Viide et al. introduces the idea of inferring a context free grammar from training data that is used 
when fuzzing for generating input data. They used compression algorithms to extract a context free grammar 
from the training data following the “Minimum Description Length” principle. The advantage of this approach 
is that the expensive task of creating a model of the SUT can be dropped and nevertheless model-based 
fuzzing can be conducted. The quality of the inferred model directly correlates with the amount and 
dissimilarity of available traces used for extracting the grammar. If the model is not exact, implicit behaviour 
fuzzing is done when using parts of the inferred model where differences to the behaviour of the SUT exist. 
Another way of inferring a model of the SUT is by performing evolutionary algorithms. DeMott, Enbody and 
Punch follow this approach in [20]. They manage pools of sessions. Each session represents one full 
transaction with the SUT. It consists of legs that are reads or writes each containing token where a token is a 
piece of data. The fitness function is determined per session and per pool by code coverage of the SUT. For 
that purpose a modified version of the debugging framework PaiMei was brought into play. The generations 
are created by crossing pools, selecting, crossing and mutating sessions. After creation of a new generation 
the SUT is fed with the sessions of the pools and the fitness of every session and pool is recalculated. This 
process is stopped after a given number of generations. This is a more advanced but also not explicit way of 
behaviour fuzzing. Dynamic generation and evolution-based fuzzers try to learn the protocol using different 
algorithms as mentioned above. At the beginning of the learning process the model is mostly incorrect and 
so invalid messages and data are sent to the SUT. During the process the learned model is getting closer to 
the implemented behaviour of the SUT. During this approximation the fuzzing gets less random-based and 
gets subtler because the difference between the invalid generated behaviour and the correct use of the SUT 
gets smaller. Therefore implicit behaviour fuzzing performed by dynamic generation and evolution-based is 
superior to that performed random-based fuzzers. 
But there is a crucial drawback of implicit behaviour fuzzing: While implicit behaviour fuzzing can find 
weaknesses like performance degradation and crashes, but real vulnerabilities cannot be detected. That is 
the case because there is no specification the revealed behaviour of the SUT can be compared to and so 
vulnerabilities that e. g. revealing secret data or enabling code injection are interpreted as intended features. 

2.8.3 Advantages of UML Sequence Diagrams when Fuzzing Behaviour 

The presented approach of fuzzing behaviour will be outlined along UML sequence diagrams. The Unified 
Modelling Language is a widely used standard to model object-oriented software systems and is currently 
available in version 2.3. It is used to define structural and behavioural aspects of software systems. One kind 
of a behavioural diagram is a sequence diagram. It’s an interaction diagram that is used to show sequential 
processes between two or more objects that use messages to communicate with each other. While in object-
oriented programming these messages are method calls in text oriented protocols such as HTTP these 
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messages are the verbs of the protocol. Messages may have in and outgoing parameters as well as return 
values. The order of messages represents their appearance in time. Figure 45 shows an example of a 
sequence diagram. 
The goal when fuzzing sequence diagrams is to generate invalid sequences of messages. UML sequence 
diagrams show valid sequences of messages between two or more objects, for example a client and a 
server. Having defined the valid message sequences between these objects, all other message sequences 
are known to be invalid. Fuzzing of sequence diagrams generates these invalid message sequence using 
the sequence diagrams representing valid message sequences. 

2.8.3.1 Combined fragments 

Since UML 2 sequence diagrams can contain control structured, e. g. loops, branches, and other features 
like the possibility to declare not only valid sequences but also to declare a certain sequence as invalid. 
These control structures relate to one more certain sub sequences that are encapsulated in interaction 
operands of a combined fragment. Combined fragments have an interaction operator that indicates the type 
the fragment, e. g. loop, and contain one or more sub sequences called interaction operands. An interaction 
constraint can be defined for each interaction operand to define the conditions under that the interaction 
operand is executed. 
For example a combined fragment with the interaction operator loop contains exactly one interaction 
operands. The interaction operand contains an interaction constraint that defines at least a value minint that 
defines the number of executions of the interaction operand. Additionally it can define an upper bound of 
executions defining the maxint value to specify a range of valid loop iterations. A Boolean expression can be 
specified that exhibits more constraints under which the interaction operand is executed. 
Because of the additional constraints defined explicitly by interaction constraints and implicitly by the 
interaction operator combined fragments are helpful defining invalid sequences by violating these 
constraints. 

2.8.3.2 State invariants 

State invariants are invariants that are associated with a lifeline of a sequence diagram. They exhibit a 
constraint that is evaluated during runtime. If the constraint evaluates to true, the sequence is valid, 
otherwise it is invalid. So violating a state invariant is a way to generate an invalid sequence. But there are 
some limitations: 

� Because of the black box nature of fuzzing the tested SUT cannot be modified. Hence only violate 
state invariants can be violated that are related to the lifeline of the test component. 

� The constraint of a state invariant has not to refer to objects represented in the sequence diagram 
but can refer to external states, too. Again because of the black box nature of fuzz testing we can 
only state invariants can be violated that refer directly to attributes of the test component. 

2.8.3.3 Time & durations constraints 

Similar to state invariants time and duration constraints are evaluated during runtime and distinguish valid 
and invalid sequences. Sequences are valid if the time or duration constraint is evaluated to true. Like state 
invariants time and duration constraints can only be violated if they refer to the lifeline of the test component. 
But in contrast violating them is easier because the constrained element – time – is in direct control of the 
test component when sending messages, especially a time limit that must not exceeded. 

2.8.4 General Approach 

Instead of creating behaviour fuzzing test cases from UML sequence diagrams in a direct way this effort is 
avoided by modifying the sequence diagrams and generating new sequence diagrams by fuzzing. This 
approach has the advantage that already developed methods for test case generation from sequence 
diagrams can be used furthermore. The fuzzed sequence diagrams are generated by violating the different 
constraints given by it. As a result many fuzzed sequence diagrams are generated from one valid sequence 
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diagram. Depending on the complexity of a sequence diagram many different model elements can be fuzzed 
in many different ways. 
The fuzzed sequence diagrams are generated as follow: In a first step only one model element at once 
leading to a fuzzed sequence diagram representing a test case. For instance, a interaction constraint of a 
combined fragment of kind alternatives is negated. This is done for the different model elements and the 
possibilities to fuzz their behaviour. 
In a second step, fuzzing different model elements is combined resulting in fuzzed sequence diagrams each 
containing at least two fuzzed model elements. For instance if a sequence diagram is fuzzed on the one 
hand by negating the interaction constraint of an alternatives combined fragment and on the other hand by 
repeating a single message, in the second step a fuzzed sequence diagram is created by combining these 
two fuzzed model element in a single fuzzed sequence diagram. This is done due to the fact that an invalid 
sequence containing only one invalid element does not necessarily reveal a vulnerability what is showed for 
data fuzzing [83]. 
The third step consists of fuzzing three model elements at once, for example negating the interaction 
constraint of an alternative combined fragment and repeating a message within the first interaction operand. 
This is done for the same reason as in step 2. The second and the third step are repeated increasing the 
number of fuzzed model elements in each iteration. 
The number of iterations can be stopped for several reasons depending on the capabilities to get feedback 
from the SUT. In addition to metrics proposed in [70], e. g. interface coverage metrics or code coverage 
metrics, one reason to stop fuzzing could be that the SUT is rejecting all fuzzed sequences after certain 
iteration because they contain too much invalid messages and thus it can be expected that more fuzzed 
sequences will be rejected, too. This needs feedback from the SUT whether the fuzzed sequences are 
processed by the SUT or if they are immediately rejected by the SUT. Another possibility could be a ratio of 
invalid model elements and valid model elements to stop fuzzing. Eventually the process of generating 
fuzzed sequences should stop if nearly all model elements of a sequence diagram are fuzzed because this 
approximates to random behaviour fuzzing what is less efficient for data fuzzing [72]. 
An easy way to determine whether a test case revealed a vulnerability is valid case instrumentation [70], p. 
170. Using valid case instrumentation after each fuzz test case a test case conform to the specification of the 
SUT is performed to determine if the SUT is still available. 

2.8.5 Realization 

2.8.5.1 Fuzzing behaviour of UML sequence diagram model elements 

The concrete fuzzing of behaviour is realized by modifying the different model elements. This could be done 
in several ways: 

� modifying an individual message, 

� changing the order of messages, 

� changing fragments of sequence diagrams, 

� violating time and duration constraints as well as state invariants if possible. 
The mentioned possibilities will be presented in detail in the following. 

2.8.5.2 One message 

Generating an invalid sequence of messages can be achieved by modifying an individual message. To 
obtain an invalid sequence diagram, a single message 

� can be removed from the sequence diagram, 

� can be repeated thus it exists twice or more, 

� can be changed by type that is replacing it by another message, 

� can be moved to another position, 
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� can be inserted. 

2.8.5.3 Two and more messages 

There are two possibilities of fuzzing two and more messages: 

� If two messages are selected these messages can be interchanged. One invalid sequence can be 
generated this way. 

� If more than two messages are selected, they can be randomly permuted. Because of its 
randomness this approach is less powerful than more directed ones [72]. If n  messages are 

selected, 1!−n  invalid sequences can be generated this way. 

A less destructive approach could be rotating the selected messages. The inner structure of the 
sequence is only violated at three points: at the new beginning message of the sequence that was 
formerly not at the beginning of the message sequence, at the message that was at the end of the 
message sequence before rotating it and is now within the sequence succeeded by the former 
beginning message, and at the end of the sequence after rotating it that was formerly within the 
messages sequence. It tests stepwise omitting messages in the beginning of a sequence and 
sending it later. Following this approach if n  messages are selected n  different invalid sequences 

can be generated. 

2.8.5.4 Combined fragments 

Combined Fragments are control structures that describe a number of different sequences. The semantics of 
a combined fragment is defined by an interaction operator. It consists of that interaction operator and one or 
more interaction operands. Each interaction operand can have an interaction constraint as a guard. 
Behaviour fuzzing with combined fragments can be done in two ways: considering a combined fragment as a 
whole or by considering its interaction operands and interaction constraints. When considering a combined 
fragment as a whole, it can be fuzzed using the same mechanisms as for messages. A combined fragment  

� can be removed from the sequence diagram, 

� can be repeated thus it exists twice or more, 

� can be changed by type that means changing its interaction operator, 

� can be moved to another position, 

� can be inserted. 
The third and the fifth operation are – sometimes – difficult to apply to a combined fragment. In case of 
changing its type meaning changing its interaction operator, depending on the former and the new 
interaction operator more than just changing the interaction operator has to be done. When the former 
interaction operator is break that may have only one interaction operator and is changed to alternatives that 
has usually two interaction operands there is a second interaction operand to be inserted. But filling it with 
messages in more than a random way is difficult because there are initially no messages in the interaction 
operand that can be fuzzed. This is also true when inserting a new combined fragment. So removing, 
repeating and moving combined fragments seems to be the most useful operation when fuzzing combined 
fragments as whole. 
The ways of behaviour fuzzing combined fragments considering its parts is discussed in the following 
depending on the different interaction operators defined in the UML Superstructure Specification [62]. 

2.8.5.4.1 Alternatives 

Combined fragments with the interaction operator alternatives realize control structure that are known in 
programming languages as for instance if … then … else and switch. They consist of one or more 

interaction operands each containing an interaction constraint. The interaction constraints of all interaction 
operands must be disjoint. Hence at most one interaction operand is executed during one sequence. 
To obtain an invalid sequence the following fuzzing operations are possible: 
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� It is possible to interchange all messages of both interaction operands. This could be done by 
moving all messages from the first interaction operand to the second and vice versa or by 
interchanging the interaction constraints of the interaction operands – either in a random 
manner or rotating them as described for single messages in 2.8.5.3. 

� All interaction operands can be combined a single sequence and the interaction constrains as 
well as the enclosing combined fragment can be removed. If there are more than two 
interaction operands, this could be done by combining stepwise two and more interaction 
operands until all interaction operands are combined. 

2.8.5.4.2 Option 

An option combined fragment contains an optional message sequence whose execution is guarded by an 
interaction constraint. It has only one interaction operand. 
An invalid sequence can be obtained by disintegrating the combined fragment and preserving the containing 
message sequence. However doing this, valid sequences beside invalid sequences are also generated. This 
is the case because the interaction constrained is removed while disintegrating the combined fragment 
leading to sequences of the former optional sequence that are executed if the former interaction constraint 
was true and was false. 
Thus negating the interaction constraint is more effective because only invalid sequences can be generated 
from the resulting sequence diagram because the optional sequence is executed where it was not in the 
original sequence diagram. 

2.8.5.4.3 Break 

In certain situations it is necessary to perform special stuff instead of following the regular sequence 
diagram. This can be in case of there is an exceptional situation, for instance a resource cannot be allocated. 
To express this in a sequence diagram, the combined fragment break is used. It contains exactly one 
interaction operand and an interaction constraint. If the interaction constraint is evaluated to true, the 
interaction operand is executed and the remainder of the interaction fragment the break combined fragment 
is enclosed in is not executed. 
Invalid sequences can be obtained doing the following: 

� Negate the interaction operand. Doing this has the same effect as interchanging the messages of 
the interaction operand and the remainder of the sequence diagram. 

� Disintegrating the combined fragment results – in contrast to an option combined fragment – only to 
invalid message sequences because either the interaction operand or the remainder of the 
enclosing interaction fragment is executed. Disintegrating the combined fragments yields to a 
sequence where both the sequence defined in the interaction operand and the remainder of the 
sequence diagram is executed. 

2.8.5.4.4 Parallel 

If two or more sequences of messages can be executed by merging them where only the order within one 
message sequence must be preserved but can be interrupted by other sequences this is expressed in a 
sequence diagram using the parallel combined fragment. The different interaction operands of this kind of 
combined fragments represent the message sequences whose order must be preserved but can be merged. 
To obtain invalid sequences, the messages enclosed in one interaction operand can be disordered. This is 
not only true for parallel combined fragments but for all messages in a sequence diagram. So parallel 
combined fragments are not helpful generating invalid sequences. 

2.8.5.4.5 Weak sequencing 

Weak Sequencing is the default for how the order of messages must be preserved. If nothing else is 
specified, weak sequencing is applied to a sequence diagram or an interaction fragment. If weak sequencing 
is applied, the order of messages regarding each lifeline must be preserved, the order of messages that are 
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associated to different lifelines does not need to be preserved. As a consequence, changing the order of 
messages generates only invalid sequences when they relate to the same pair of lifelines. 

2.8.5.4.6 Strict sequencing 

In contrast to weak sequencing, strict sequencing preserves the order of messages independent of the 
lifelines they are related to. Thus invalid sequences can be obtained by changing the order of messages 
without the necessity to respect the lifelines they are related to. 

2.8.5.4.7 Negative 

The negative combined fragment differs from all other combined fragments as it does not show a valid but an 
invalid message sequence. To obtain an invalid sequence, the combined fragment simply has to be 
disintegrated preserving the message sequence enclosed in the interaction operand. If there is an interaction 
constraint as a guard it can be negated to obtain invalid message sequences. 

2.8.5.4.8 Critical region 

A critical region denotes a sequence that is treated as a whole. It covers all lifelines and weak sequencing 
and parallel combined fragments does not influence the order of messages within the critical region. A critical 
region does not need to have an interaction constraint. An invalid sequence can only be obtained when the 
order of messages is changed or other messages are inserted in the critical region. This is not only true for a 
critical region but for all messages in a sequence diagram. 

2.8.5.4.9 Ignore/Consider 

Ignore and consider combined fragments are two sides of the same coin. Both are supplemented with a list 
of messages. If it is an ignore combined fragment, the meaning is that these messages are not relevant to 
determine a valid message sequence. Thus these messages can arbitrarily occur within this combined 
fragment without affecting the validity of the sequence. Contrariwise if it is a consider combined fragment 
only the mentioned messages are relevant for a valid sequence. Thus all other messages can be arbitrarily 
inserted in the message sequence. 
Invalid sequences can be obtained inserting messages, change the order of messages or deleting messages 
that are supplementing a consider combined fragment. For an ignore combined fragment the complement of 
the supplementing messages can be inserted, changed in order or deleted from the sequence. 

2.8.5.4.10 Loop 

A loop represents a repetition of a sequence of messages. It can be set to a certain number of repetitions or 
limited by a lower and an upper bound. Additionally no limit can be set to tell that from zero to infinite 
repetitions all number of repetitions are valid. 
Invalid sequences can only be obtained if there is at least one parameter for the loop: 

� If there is exactly one parameter, invalid message sequences can be generated by changing it to 
small and greater values to test if there are off by one-issues. 

� If there are two parameters, two different combined fragments can be generated one running from 
zero to the lower bound –1 and the other by running from the upper bound +1 to a maximum 
number. 

2.8.5.4.11 Assertion 

To specify that only a specific sequence is a valid continuation, the interaction operator assert is used. Its 
only interaction operand contains the valid continuation. Because of the nature of sequence diagrams 
representing only valid sequences – except the combined fragment negative – assert can be used in 
combination with the combined fragment ignore or consider to specify an exemption of the messages 
associated with an ignore or consider combined fragment. 
To obtain invalid sequences from an assertion the same action can be applied to it as for strict sequencing. 
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2.8.5.5 Time & duration constraints 

Time and duration constraints can be used to specify a relative point in time where a message has to be sent 
or should be received or the amount of time that may elapse between two messages. Time and duration 
constraints can be given in different situation but only in a few of them they can be violated. There are two 
conditions that must be met to make a violation of a time or a duration constraint possible: 

� The constraint has to be on the side of the test component. If this is not the case, the constraint has 
to be maintained by the SUT that is not under control of the test component. 

� The occurrence(s), the constraint is related to, have to be in hand of the test component. This is for 
the same reason as the first condition. 

If these conditions are met, the value of the constraint can be simply changed to generate invalid sequences. 
The fuzzed constraints must then be respected at test generation time to ensure the original constraint is 
violated. 

2.8.5.6 State invariants 

State invariants can specify many different constraints on the participants of an interaction, e. g. values of 
attributes or internal or external states. As for time and duration constraints state invariants has to be on side 
of the test component and under control of it. Because of the black box character of the presented approach 
only a few of the many different kinds of constraints that can be expressed by a state invariant can be used 
for fuzzing. These include the valuation of attributes, but not references to external states. 
Another challenge when fuzzing state invariants is that just modifying them does not ensure an invalid 
sequence. If for example the state invariant refers to an attribute of the test component that should have a 
specific value, by just changing the specified value does not lead to an invalid sequence in terms of the 
original state invariant. In fact the behaviours that happen before the state invariant has to be changed in 
order to achieve the fuzzed state invariant. Additionally the value of the attribute of the test component is not 
under immediate control of the test component because the attribute gets its value by the SUT. Thus it is 
difficult to use state invariants for fuzzing. 

2.8.5.7 Basic fuzzing operations 

When looking at the different model elements of sequence diagrams and their corresponding fuzzing 
operations, commonalities between these fuzzing operations are conspicuous. For example when 
considering the combined fragments alternatives and option the fuzzing operations performed to obtain 
invalid sequences are in both cases to negate the interaction constraint. The following table composes all 
fuzzing operations and maps them to the model elements of UML sequence diagrams. 
 

Fuzzing Operation Applicable to Generates no invalid sequences when… 

Remove single message, in all 
combined fragments 
except 
� Negative 

 

all combined fragments 

…applied to messages enclosed within a 
consider/ignore combined fragment where it 
is not mentioned resp. mentioned in the list 
of messages. 

Repeat 

Move 

change type 

Insert 

permute messages regarding 
single lifeline ≥2 messages, in all 

combined fragments 
except 
� Negative 

…applied to messages enclosed within a 
consider/ignore combined fragment where it 
is not mentioned resp. mentioned in the list 
of messages. 

rotate messages regarding single 
lifeline 

interchange messages 

rotate messages > 2 messages 
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Fuzzing Operation Applicable to Generates no invalid sequences when… 

permute messages regarding 
several lifelines 

≥2 messages 

combined fragments of 
all combined fragments 
with only one 
interaction operand 

rotate messages regarding several 
lifelines 

negate interaction constraint ≤2 interaction operands 
of combined fragments 
� Option 
� Break 
� Negative 

 

interchange sequences of 
interaction operands combined fragments 

with ≥ 2 interaction 
operands 

 

interchange interaction constraints 
of interaction operands 

disintegrate combined fragment, 
remove interaction constraint and 
possibly merge interaction 
operands 

combined fragments  
� Alternatives 
� Break 
� Negative 

 

change bounds of loop combined fragment 
� Loop 

…bounds are narrower than the original 
bounds if two bounds are given.  

change time or duration constraint time constraint 

duration constraint 

 

Table 8: Basic Fuzzing Operations 

2.8.6 Example: Application of fuzzing operations to a UML sequence diagrams 

In the following a simplified example of the banking domain is used to illustrate how fuzzing operations are 
applied to a sequence diagram. For ease of understanding most parameters are omitted. 
Figure 45 shows a sequence diagram describing how a bank customer can perform a transfer order. The 
customers can make national and international transfer orders. When a bank customer creates a transfer 
order (message 1), this is specified by the parameter kindOfTransferOrder have either the value 

NationalTransferOrder or InternationalTransferorder. In the next steps the customer send the 

name of the recipient of the transfer order and the amount to be transferred (message 2) as well as the 
recipient’s national bank account information (message 3) in case of a national transfer order or recipient’s 
international bank account information (message 4) in case of an international transfer order. The distinction 
between a national and an international transfer order is expressed using the combined fragment 
alternatives evaluating the parameter kindOfTransferOrder given by message 1. After that the transfer 

order must be authorized by the customer sending a valid transaction number TAN (message 5). If the 
customer accidentally sent an invalid TAN e. g. by mistyping it, he can try to enter a valid TAN up to two 
times again (message 7, combined fragment loop). 
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Figure 45: Simplified banking example 

According to Table 8 messages everywhere in the diagram – except regarding negative combined fragments 
– can be moved, removed, repeated, inserted or the type of a message can be changed to obtain an invalid 
sequence. For instance message 5 can be moved to after message 2. Figure 46 shows the beginning of the 
fuzzed sequence diagram. The rest of the diagram remains untouched. 
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Figure 46: Invalid sequence diagram obtained by moving a message 

Another possibility to obtain an invalid sequence is to negate interaction constraints of interaction operands. 
There are three interaction constraints: two in the alternatives combined fragment and another one in the 
loop combined fragment. By negating the interaction constraint of the loop combined fragment, the 
sequences generated from the resulting sequence diagram contain at least two valid transaction numbers 
sent to the banking server. Figure 47 shows the beginning of the fuzzed sequence diagram. 

 

Figure 47: Invalid sequence diagram obtained by negating an interaction constraint 

Also the boundaries of Loop combined fragments can be altered. The number of loop iterations can be 
changed to 3. The resulting sequence diagram – shown in Figure 48 – represents the situation where a 
customer can try to enter a valid transaction number up to three times after entering an invalid transaction 
number. 
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Figure 48: Invalid sequence diagram obtained by changing the bounds of a loop combined fragment 

2.8.7 Concatenation of basic fuzzing operations 

Performing the above mentioned fuzzing operations lead to three different sequence diagrams test cases 
can be generated from using known test case generation methods for sequence diagrams. As discussed in 
chapter 2.8.4, test cases are not only generated by applying a single fuzzing operation to any model element 
of a sequence diagram but also by applying a chain of several fuzzing operations.  
Considering the three fuzzing operations applied to the sequence diagram in 2.8.6, we can generate fuzzed 
sequence diagrams by applying two of them to the sequence diagram resulting in three fuzzed sequence 
diagrams and by applying all three fuzzing operations resulting in another sequence diagram. Applying all 
three fuzzing operations leads to the fuzzed sequence diagram shown in Figure 49. 



 

 
 
 

Concepts for Model-Based Security 
Testing 

 
Deliverable ID: D2.WP2 

 

 

Page    :  114 of 134 
 

 

Version:  1.0 
Date     :  26.09.2011 

 

Status : Final 
Confid : Public 

 

 

 Copyright DIAMONDS Consortium 

  

Figure 49: Fuzzed Sequence Diagram by Applying Three Different Fuzzing Operations 

But applying all possible combinations of fuzzing operations to a sequence diagram cannot only lead to a 
large number of test cases, maybe too large to execute all of them, but also to valid sequences while invalid 
sequences should be generated. An obvious example is the fuzzing operation “negate interaction constraint”. 
When applying this fuzzing operation two times to the same interaction constraint, the result is the original 
interaction constraint. So this way no invalid but valid sequences are generated. 
This is also true for less obvious situations. When disintegrating a negative combined fragment and later 
changing the order of messages that were formerly within this combined fragment the invalid sequences 
generated from disintegrating the combined fragment is then valid again. This is because the sequence 
specified within a negative combined fragment is the only invalid sequence so changing them generates 
valid sequences. 
Sometimes it is not possible to generate sequences by applying a fuzzing operation such that the resulting 
test cases represent always invalid sequences. Considering the loop combined fragment of the example 
showed in Figure 45. When changing the loop parameter from 2 to 1, some resulting test cases represents 
invalid sequences while others do not. This is caused by the interaction constrained that additionally 
influences the execution of the loop. When there is first given an invalid transaction number and then a valid 
one, the fuzzed loop results in a test case that represents a valid sequence. Only when an invalid transaction 
number is sent to the banking server two times, an invalid sequence is generated. So it does not only 
depend on the fuzzed behaviour but also on the test data if invalid sequences can be generated from a 
fuzzed sequence diagram. 
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Another situation where invalid sequences are not generated in all cases from fuzzed sequence diagrams 
are branches. Branches can be realized in UML sequence diagrams by the combined fragments alternatives, 
option and break. To ensure that a fuzzed branch is used to generate test cases representing invalid 
sequences the interaction constraint of the fuzzed interaction operand should be set to true: 

• In case of an option combined fragment the fuzzed sequence inside the combined fragment can be 
prevented from used for test case generation when its interaction constraint is evaluated to false. 
Hence setting the interaction constraint to true guarantees it is always used for test case generation. 

• In case of an alternatives combined fragment the interaction constraint enclosed in the not fuzzed 
interaction operand should be set to false while the interaction constraint within the fuzzed 
interaction operand should be set to true. This maintains that all interaction constraints of the 
combined fragment are disjoint and ensures the fuzzed interaction operand is used for test case 
generation. 

• In case of a break combined fragment, the fuzzed branch can be within the combined fragment or 
behind that. 
If the fuzzed branch is behind the break combined fragment, the execution of the fuzzed sequence 
is prevented when the interaction constraint of the break combined fragment is evaluated to true. 
Hence it should be changed to false to ensure the fuzzed sequence is used to generate test cases. 
If the fuzzed branch is inside the break combined fragment, it should be set to true to ensure it is 
always used for test case generation. 

The described procedure is illustrated along the banking example showed in Figure 45. Consider the case 
that only the second interaction operand of the alternatives combined fragment is fuzzed, for example 

message 4 sendInternationalBankAccountInfo is repeated once as showed in Figure 50. If a test 

case is generated from this fuzzed sequence diagram that creates a national transfer order, only the 
unfuzzed interaction operand of the alternatives combined fragment is executed and thus only valid 
sequences are generated. To prevent this, the interaction constraint of the first interaction operand that is not 
fuzzed is set from kindOfTransferOrder=NationalTransferorder to false. The interaction 

constrained of the second interaction constraint that is fuzzed is set from 
kindOfTransferOrder=InternationalTransferOrder to true. The result is showed in Figure 51. 

This procedure ensures that in all cases only invalid sequences are generated. 

 

Figure 50: Alternatives Combined Fragment with Fuzzed Second Interaction Operand 
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Figure 51: Modified Alternatives Combined Fragment Ensuring Only Invalid Sequences Can Be 
Generated 

 

2.9 CONCLUSION 

 
The introduced methods for active testing basically apply ideas from functional testing to the security 
domain. They are promising. Further integration seems to be necessary. The integration of test case 
generation strategies to the use of mutations for extracting security relevant test cases is one example. 
Moreover, it would also be of interest to use the obtained case studies for explaining the methods in more 
detail. 
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3. RISK ANALYSIS FOR RISK BASED TESTING 
 
Risk assessment methodologies like ETSI TRVA [24], CVSS [50], STRIDE/DREAD [31], OCTAVE [4], FAIR 
[41] and Trike [66] may help to capture risks and the risk driving factors systematically but are often 
unspecific on how to measure the individual factors. The main purpose of these kinds of risk analysis 
methods is to provide systematic process and the definition of a consistent and unambiguous vocabulary for 
risk identification and handling. In this regards the CERT provides taxonomy on operational cyber security 
risks [40]. The taxonomy identifies sources of operational cyber security risks and organizes them into four 
classes. It distinguishes between risks established by actions of people, by systems and technology failures, 
by failed internal processes, or by external events. 
In Section 3.1 we mirror risk analysis techniques with respect to the requirements of the telecommunication 
domain, in Section 3.2 we provide an overview on the relationship between risk analysis concepts and 
testing concepts or model based testing concepts for risk based testing and in Section 3.3 we provide test 
selection techniques on basis of risk analysis results. 

3.1 MIRRORING RISK ANALYSIS TECHNIQUES TO TELECOM USE CASE  

3.1.1 Brief Overview of the Current Risk Assessment Process 

For any telecom use case (e.g. a node, product, solution), a product related risk assessment is run. This risk 
assessment is aligned with well know standards e.g. ISO/IEC 17799, ISO/IEC 27001, COBIT and ISO 
13335. 

A high level risk evaluation is done at an early stage to enable early impact on the specification of the 
product. For a new release of an existing product, risk assessments made for the preceding release can be 
built upon, thereby focusing on the impact of the incremental changes in the new release. 

The following process phases are usually included in the risk assessment process: 

- Planning and Scoping, including quick system analysis 

- Actual risk assessment workshop addressing the following items 

� Identify Assets 

� Identify Threats and Vulnerabilities  

� Review Existing Security Controls  

� Evaluate Risks  

- Propose Risk Treatments and Report Results  
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3.1.2 Mirroring Techniques to Telecom Use Case  

In order to enhance both the current risk assessment process and the actual security testing following later in 
the development cycle, the purpose is to study and "mirror" risk techniques as is from other consortium 
partners to the telecom use case. In practice the objective is to try to embed these other techniques to 
existing risk assessment process. The expected output is to have a separate section in risk treatment plan 
that is direct input to security testing planning. 

3.2 TRACING BETWEEN RISK MODELLING ELEMENTS AND TEST ARTIFACTS 

Risk assessment methodologies like ETSI TRVA [24], CVSS [50], STRIDE/DREAD [31], OCTAVE [4], FAIR 
[41] and Trike [66] may help to capture risks and the risk driving factors systematically but are often 
unspecific on how to measure the individual factors. The main purpose of these kinds of risk analysis 
methods is to provide systematic process and the definition of a consistent and unambiguous vocabulary for 
risk identification and handling. In this regards the CERT provides taxonomy on operational cyber security 
risks [40]. The taxonomy identifies sources of operational cyber security risks and organizes them into four 
classes. It distinguishes between risks established by actions of people, by systems and technology failures, 
by failed internal processes, or by external events. 
In Section 3.1 we mirror risk analysis techniques with respect to the requirements of the telecommunication 
domain, in Section 3.2 we provide an overview on the relationship between risk analysis concepts and 
testing concepts or model based testing concepts for risk based testing and in Section 3.3 we provide test 
selection techniques on basis of risk analysis results. 
 

3.2.1 Overview on Risk Analysis Concept 

From the process point of view, the risk assessment methodologies like Risk assessment methodologies like 
ETSI TRVA [24], CVSS [50], STRIDE/DREAD [31], OCTAVE [4], FAIR [41] and Trike [66] have differences in 
detail but mainly propose the same basic actions namely:  
 

• identification of assets, 

• threat analysis,  

• vulnerability analysis, 

• the identification of mitigation strategies, and  

• the quantification or qualification of risks  
 
In this sense the ISO 27000 [31] definition “security risk: the potential that a threat will exploit a vulnerability 
of an asset or group of assets and thereby cause harm to the organization” is perfectly aligned with the 
activities above. 
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Risk modelling tools and methodologies like fault tree analysis (FTA) [31], cause-consequence analysis 
(CCA) [58] or the CORAS risk modelling language [48] are dedicated to identify the risk factors and their 
interrelationships. During a FTA the analyst starts with a high-level fault and decomposes the fault top-down 
to basic events, which can be identified in the system. A variant of fault trees are so called attack trees [52]. 
Attack trees are directly related to security risk analysis. An attack tree starts from a complex high-level 
attack scenario and decomposes the attack scenario to more concrete basic interaction with the system. 
ETA (event tree analysis) works bottom-up, the analyst starts with the identification of unwanted system 
events and analyses the consequences in case of an occurring unwanted event. As a connection of both 
methods a CCA (Cause-consequence analysis) can be used. The analysis starts from a thread. The causes 
(top-town) and the consequences (bottom-up) will be analysed simultaneously.  
 
The CORAS language integrates different tree based approaches to risk modelling. It is a graph based 
modelling approach that emphasize on the systematic modelling of threats or so called threat scenarios and 
provides formalisms to annotate the threat scenarios with probability values and formalisms to reason with 
these annotations. CORAS is a language in that sense, that it defines a number of risk analysis concepts 
with their structural interrelationship (abstract syntax), the meaning of the concepts and their interrelationship 
by means of a mapping to English prose (semantics), and different representation formats (concrete syntax). 
The main threat analysis concepts in CORAS are:    

 

Table 9: CORAS main threat analysis concepts (see [48]) 

Threat  A threat is a potential cause of an unwanted incident.
16

  

ThreatScenario A threat scenario is a chain or series of event that is initiated by a threat 
and that may lead to an unwanted incident.

 1
 

UnwantedIncident  An unwanted incident is an event that harms of reduces the value of an 
asset. 

Asset An asset is something to which a party assigns value and hence for 
which the party requires protection. CORAS distinguishes direct assets 
and indirect assets. 

Vulnerability A vulnerability is a weakness, flaw or deficiency that opens for or may 
be exploited by, a threat to cause harm to or reduce the value of an 
asset. 

TreatmentScenario The implementation, operationalization or execution of appropriate 
measures to reduce risk level. 

 
Moreover CORAS allows the annotation of elements with risk estimation values and with values 
characterizing the consequences of unwanted incident. These concepts are summarized in the table below. 
 

Table 10: CORAS main risk estimation concepts (see [48]) 

Likelihood The frequency or probability of something (Threat scenarios, Unwanted 
incidents) to occur 

Consequence The impact of an unwanted incident and its consequence for a specific 
asset 

Risk The likelihood of an unwanted incident and its consequence for a 
specific asset 

RiskLevel The level or value of a risk derived from its likelihood  

 

                                                      
16

 The term thread is ambiguous here. Other methods distinguish threat agents and threats where the threat agent 
corresponds to the CORAS::Threat and the threat to a CORAS::Threat Scenario. 
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In [48] a comprehensive meta-model is given that defines the basic structural dependencies between the 
different risk modelling concepts.  

3.2.2 A Minimal Set of Requirements Analysis and Architectural Design Concepts 

 
Architectural software design, also described as strategic design, is an activity concerned with global 
requirements that deal with the general set up of a computer system. Regarding security risk analysis we are 
principally interested in locating critical functionality with respect to the overall software architecture and in 
identifying critical interfaces, which might be an entry point for an adversary. Moreover we need a general 
concept that describes the expectations on a system. 
 
In the following we introduce the general concept of a requirement that describes the conditions or 
capabilities of system or component. We additionally introduce basic architectural design concepts like 
components and interfaces that are used to describe the system setup and its entry points. 
 

Table 11: A minimal set of requirements analysis and architectural design concepts 

Requirement A condition or capability needed by a user to solve a problem or 
achieve an objective that must be met or possessed by a system or 
system component to satisfy a contract, standard, specification, or other 
formally imposed document (after [IEEE 610]). 

Component A software component is a software package, or a software module 
that encapsulates a set of related functions (or data). It follows the 
principle of separation of concern and information hiding and 
communicates with other components via interfaces. A component itself 
may consist of other components. 

Interface An interface is a point of interaction between components. Interfaces 
realize complement the principle of information hiding o components. 
Components using interfaces to communicate with other components via 
an associated protocol. 

 

3.2.3 Overview on (Model Based) Testing Concepts 

Software testing is an experimental approach of validating and verifying that a software system meets its 
requirements and works as expected (functional testing) or shows certain characteristics (non-functional 
requirements). This is done by defining test cases that are systematically directed in finding faults in the 
implementation and by providing test suites, i.e. specifically compiled collections of test cases, which provide 
an argument for the absence of faults.  

Security testing is a special kind of testing with the aim in validating and verifying that a software system 
meets its security requirements and the security functionality works as expected (functional security testing) 
or that the software shows certain security characteristics. We can distinguish two different approaches. 
Security functional testing aims for certain functional security measures and validate and verifies the 
expected security functional behaviour and security tests that aim for finding vulnerabilities in a system by 
simulating attacks and other kinds of penetration attempts, so called penetration tests. Most known 
vulnerabilities originate from software faults or design flaws. However, not every fault or design flaw 
constitutes vulnerability.   

Testing as well as security testing follow a series of activities and artefacts that aim in systematically plan, 
specify, realize execute test and evaluate the test results. Model based testing shows slightly different 
definition of these activities. 
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1. Identification of test objectives and methods: The test objectives define the overall goals of the 

model based testing process and relate these goals to testing methods that allow for accomplish the 
objective. For model based testing the modelling, test selection and test generation strategies need 
to be planed.  

 
2. Design a functional test model: The test model represents the expected operational behaviour of the 

SUT or the system environment or usage. Standard modelling languages such as UML can be used 
to formalize the points of control and observation of the SUT, the expected dynamic behaviour of the 
system, the entities associated with the test, and test data for various test configurations. The test 
models must be precise and complete enough to allow automated derivation of tests from these 
models. 
 

3. Determine a test generation criteria: Usually, there are an infinite number of possible tests that can 
be generated from a model, so that test designers choose test selection criteria to limit the number of 
generated tests to a finite number by e.g. selecting highest-priority tests, or to ensure specific 
coverage of system behaviours. A common approach for test selection is based on structural model 
coverage, i.e. determining the coverage of model elements by generated tests.  Another useful kind 
of test generation criteria ensures that the generated test cases cover all the requirements, possibly 
with more tests generated for requirements that have a higher risk levels. In this way, model-based 
testing can be used to implement a requirements-oriented or a risk-driven testing approach.  
 

4. Generate the tests. The test generation is in MBT typically a fully automated process to derive the 
test cases from the test model as determined by the test generation criteria. The generated test 
cases are sequences of high-level events or actions to or by the SUT, with input parameters and 
expected output parameters and return values for each event or action. If needed, the generated 
tests are further refined to a more concrete level or adapted to the SUT to support their automated 
execution.  

 
5. Assess the test results. During test assessment or test evaluation the quality of the SUT is rated with 

respect to the test results and the quality of test themselves (i.e. the fault revealing capability of the 
test). After the test assessment the test result may impact the system and the system requirements 
and the test specification.   

 
Figure 52 shows the relationship between model based testing artefact as actually seen by the ETSI. 
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Figure 52: The model-based testing elements [81] 

 
 
However, the risk based testing approach in diamonds needs to integrate in model based testing approaches 
that aim for test case generation and for more classical approaches that aim for the manual specification of 
individual test cases (either by models or by other kind of test specification or test scripting languages). 
The following table lists the main testing concepts that are in our opinion necessary, to describe the 
relationship to risk based testing.  
 

Table 12:Overview on (model based) testing concepts 

TestObjective A reason or purpose for designing and executing a test (after [39]). 

TestCase A set of input values, execution preconditions, expected results and 
execution postconditions, developed for a particular objective or test 
condition, such as to exercise a particular program path or to verify 
compliance with a specific requirement (after [37]). 

TestSuite  A set of several test cases for a component or system under test, 
where the post condition of one test case is often used as the 
precondition for the next one (after [39]). 

TestSelection 
Criterion 

A property that is satisfied by a set of test cases generated from a model 
(after [39]). 

TestRun Execution of a set of test cases on a specific version of the test 
object (after [39]). 

TestResult The consequence/outcome of the execution of a test. It includes outputs 
to screens, changes to data, reports, and communication messages 
sent out (after [39]). Normally a test result contains a test verdict that 
states whether a functional test has passed, failed or none of both. For 
security testing such a functional test verdict may not be applicable  in 
any case (e.g. when we have found a certain kind of security issue by 
testing, do we say the test has failed or passed). 
. 

 
 
These concepts and their relationship is sketched in the following information model. 
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Figure 53: Information model for testing concepts 

 

3.2.4 Risk-Based Security Testing 

Risk-based Security Testing can be generally introduced with two different goals in mind. On the one hand 
side risk based testing approaches can help to optimize the overall test process. The results of the risk 
analysis, i.e. the results of threat and vulnerability analysis, are used to guide the test identification and may 
complement requirements engineering results with systematic information concerning threats and 
vulnerabilities of a system. A comprehensive risk assessment additionally introduces the notion of risk 
values, that is the estimation of probabilities and consequences for certain threat scenarios. These risk 
values can be additionally used to weight threat scenarios and thus help identifying which threat scenarios 
are more relevant and thus identifying the threat scenarios that are the ones that need to be treated and 
tested more carefully. The basic idea of kind of this kind of risk based security testing approach is more or 
less similar to other risk based testing strategies already mentioned in the beginning of this chapter (i.e. 
Section 3.2) and in Deliverable D1.WP2. However, the main challenge remains. Currently there is no method 
framework that allows for systematically capture security risks (i.e. threat scenarios, vulnerabilities, 
countermeasures) and risk values and relate both of them to test artefacts so that test identification and test 
selection is effectively supported. 
 
On the other hand side risk based testing approaches can help to optimize the risk analysis and the risk 
assessment itself. Risk analysis and risk assessment, similar to other development activities in early project 
phases, are mainly based on assumption on the system itself. On the other hand testing is one of the most 
relevant means to do real experiments on a system and thus be able to gain empirical evidence on the 
existence of vulnerabilities, the applicability and consequences of threat scenarios and the quality of 
countermeasures. Thus, risk based testing results can be used as a form of evidence for the assumptions 
that have been made during the risk evaluation and risk assessment. In particular risk based testing may 
help in 
 

� providing evidence on functional correctness of countermeasures, 
� providing evidence on the absence of known vulnerabilities, and 
� discovering unknown risk factors (i.e. vulnerabilities). 

 
The results of a risk based testing process then help optimizing risk analysis by identifying new risk factors 
and reassessing the risk values, that have been stated during system analysis and planning. Figure 54: Risk-
based testing shows the overall interaction between risk analysis and testing and depicts both approaches, 
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the optimization of the testing approach by means of risk analysis results and the control and optimization of 
the risk analysis and risk assessment results by means of test results. 
 

 

Figure 54: Risk-based testing 

 
 
In summary we can identify three different activities that can be addressed by risk based testing approaches. 
 
Risk-based test planning: The goal of risk-based test planning is to improve the testing process 
systematically so that high-risk areas of the application under test can be covered and same time achieve a 
reduction in the expenses and the resources used by the test work is focused on areas with the highest 
risks. The risk-based test planning (RBT) are risk factors identified and created test cases according to the 
system risk. 
 
Risk-based test selection: To find an optimal set of test cases, require an appropriate selection strategy. 
Such a strategy on the one hand takes into account the available test budget and provides, far as possible, 
the necessary test coverage on the other hand. In functional testing coverage is often described by the 
coverage of requirements or the coverage of model elements such as states, transitions or decisions. In risk 
based testing we aim for the coverage of identified risks of a system. Risk-based test selection criteria can 
be used to control the selection or the selected generation of test cases. The criteria are designed by taking 
the risk values from the risk assessment to set priorities for the test case generation as well as to the order of 
test execution.  

 
Risk control: The decision when a test is to end is always a question of the remaining test-budget, the 
remaining time and the probability to discover even more critical errors, vulnerabilities or design flaws. In risk 
based testing risk analysis gives a good guidance where to find critical errors and which kinds of risks have 
to be addressed (see above). On the other hand, the test results can reflect and verify the assumptions that 
have been made during risk analysis. Newly discovered flaws or vulnerabilities need to be integrated in the 
risk analysis. If the tests sufficiently cover the treatments and countermeasures, the number of errors or 
flaws indicates whether the maturity of treatments and countermeasures is sufficient to provide the required 
level of protection.  In this sense, the test results can be used to adjust risk analysis results by introducing 
new or revised vulnerabilities or revised risk estimations on basis of the errors or flaws that have been found. 
Test results, test coverage information and a revised or affirmed risk assessment may provide a solid 
argument that can be used to effectively verify the level of security of a system.  
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3.2.5 Traceability for Risk-Based Testing 

In the following subsection we introduce relations between the concepts from the risk analysis domain and 
the testing domain. The relations are dedicated to support the risk based testing activities that have been 
introduced in the section above. To be able to easily identify the source domain for each concept and thus 
provide a better readability of the overall specification, we prefix each element using a different identifier for 
each source domain. Thus TEST::TestCase identifies the concept test case from the testing domain and 
RA::ThreatScenario identifies a threat scenario from the risk analysis domain. 

3.2.5.1 Traceability for risk based test planning 

To enable risk based test planning we mainly base on the definition of test objectives. Test objectives 
describe objectives or purposes to be tested. We consider a test objective to be foremost an informal 
specification that defines what aspect of a certain system, functionality, or protocol etc. should be tested and 
how these tests can be performed (e.g. which testing methods can be used for testing. Similar to 
requirements in requirements engineering test purposes can be refined and decomposed during the test 
development process. In the following we describe the relationship between TEST::TestObjective and 
RA::UnwantedIncident, RA::ThreatScenario, RA::Vulnerability and RA::TreatmentScenario. While 
RA::UnwantedIncident, RA::ThreatScenario describe negative requirements on a system with quite similar 
implications for testing, we consider that a RA::Vulnerability is a potential problem in a system that is to be 
found or closer characterized by testing and a RA::TreatmentScenario is directly connected to constructive 
counter measures and thus already relates to system security requirements, which can be tested in a 
functional manner. 
 

Table 13: Relations between risk assessment concepts and test  identification concepts 

RA::UnwantedIncident TEST::TestObjective Test objectives for an unwanted incident describe 
what kind of test and test methods can be applied 
to initiate and detect an unwanted incident and to 
characterize its consequences. Information on 
related risks can be used to weight the 
TestObjective. 

RA::ThreatScenario TEST::TestObjective Test objectives for threat scenarios describe what 
kind of test and test methods can be applied to 
initiate a threat scenario and to characterize its 
consequences. Information on related risks can 
be used to weight the TestObjective 

RA::Vulnerability TEST::TestObjective Test objectives for vulnerabilities describe what 
kind of test and test methods can be applied to 
find or characterize a vulnerability. Information on 
related risks can be used to weight the 
TestObjective 

RA::TreatmentScenario TEST::TestObjective Test objectives for treatment scenarios describe 
what kind of test and test methods can be applied 
to characterize the maturity and effectiveness of a 
TreatmentScenario. Information on related risks 
can be used to weight the TestObjective. 

3.2.5.2 Traceability for risk based test selection 

The process of test selection is meant to be either accomplished on existing test cases as a preparation of a 
test run or during test generation to enable a directed or goal oriented generation of tests. The result in both 
cases is a selection of test cases, i.e. a test suite that conform to a set of selection properties that are given 
by a test selection criterion. In the case of risk based test selection criteria these properties are defined by 
means of risk assessment concepts, first and foremost the risks itself.  
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In general the risk weighted test objectives (see Section above) or artefacts that are deduced from risk 
weighted test artefacts may provide the necessary link that transitively relates test selection criteria to risk 
assessment artefacts. We would then able to apply a test selection on basis of coverage criteria for risk 
weighted test objectives. This additionally may provide the opportunity to consider simultaneously properties 
that come from risk analysis and from other sources. However, this is more a question on optimization and 
on how we effectively realize traceability. To conceptionally describe the relationship between risk analysis 
and test selections we going to describe the direct relationship between test concepts and risk assessment 
concepts for risk based test selection.  
 

Table 14: Relations between risk assessment concepts and test selection concepts 

RA::Risk TEST::TestSelectionCriteron The test selection criterion directly or 
indirectly relates to risks (i.e. the product of 
probability and consequence) and selects 
test cases with respect to their risk 
coverage (e.g. which risks are addressed 
and how often are they are addressed) or 
risk reduction capabilities .  

RA::Threat 
RA::ThreatScenario 
RA::TreatmentScenario 
RA:: UnwantedIncident 
RA::Vulnerability 
RA::Asset 

TEST::TestSelectionCriteron The test selection criterion directly or 
indirectly relates to threats, threat 
scenarios, treatment scenarios, 
vulnerabilities  and unwanted incidents and 
selects test cases with respect to their 
coverage of the given elements (e.g. which 
elements are addressed by the test case) 

 

3.2.5.3 Traceability for risk control 

Risk control deals with the revision of risk assessment results by correcting assumptions on probabilities, 
consequences or the maturity of treatments scenarios or deals with the completion of risk analysis result by 
integrating vulnerabilities and thus potentially threats, threat scenarios and unwanted incidents.  

Table 15: Relations between risk assessment concepts and testing concepts for risk control 

RA::Risk TEST::TestResult A Test results relates to the risks, which is 
addressed/covered by the related test case. 

RA::TreatmentScenario 
 

TEST::TestResult A Test results relates to the treatment 
scenario, which has been verified or 
characterized by the related test case. 

RA::Threat 
RA::ThreatScenario 
RA::UnwantedIncident 
 

TEST::TestResult A Test results relates to the threat, threat 
scenario or unwanted incident, which has 
been realized or characterized by the 
related test case. 

RA::Asset TEST::TestResult A Test results relates to the Asset, which 
risks are addressed/covered by the related 
test case. 

RA::Vulnerability TEST::TestResult A Test results relates to the vulnerability, 
which has been located, characterized or 
detected by the related test case. 

 
Please note, the relationship between test results and the risk analysis concept is often transitively realized 
by relating risk assessment concepts to the requirements analysis or the architectural design concepts that 
have been identified in Section 3.2.2. Thus, first relations between, on the one hand side, requirements, 
components or interfaces and, on the other hand side, risks assessment concepts like risks, vulnerabilities, 
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threats etc. is established. Furthermore test cases and test suites (and thus the test results) are as well often 
related to requirements analysis or the architectural design elements. However, this kind of transitive 
relationship supports quality statements regarding requirements, components and their interfaces but does 
not allow to trace between test results and risk analysis because the relations between the transitive partners 
are often realized with an  n::m cardinality. 
 

3.3 TEST CASE SELECTION 

Test cases help to determine if a program functions correctly. A big program may need a large number of 
test cases to cover a reasonable part of its functionality, and sometimes test cases are generated 
automatically, which may increase the number significantly. Moreover, some test cases may take a relatively 
long time to run, especially when manual interaction is required. Hence, it is not always possible rerun all test 
cases every time the source code is changed and the program must be rebuilt.  
 
Test case selection automatically chooses which test cases should be rerun when it is not reasonable to 
execute them all. Such selection speeds up software development, saves computing resources, and gives 
faster feedback to software developers. Obviously, test case selection must be faster than running all the 
test cases. Successful test case selection helps to run the most important test cases and thus assists in 
reducing the number of software errors and related security risks.  
 
We focus on programs written in the C programming language, although many of the ideas apply to other 
languages as well. Our test case selection is independent of how test cases are described and executed.  
 
Broadly speaking, this test case selection method consists of three major tasks: 
 

• Record a trace for each passed test case. The trace tells which program elements are required for 
the test case. The trace contains not only the set of elements but also the order in which the 
elements are used and how many times they are used. It is assumed that test cases are 
deterministic so that running the same test case multiple times always produces the same 
behaviour and trace.  

• Analyse the source code change, in order to see which elements have changed. The old and new 
versions of the program are compared, in a chosen representation and level of granularity.   

• Select automatically those test cases for rerunning that use the elements that have changed 
according to the analysis. Test cases that only use unchanged elements in their trace need not be 
rerun.  

 
It is possible to analyse code changes and trace test cases in source code level, binary level, and various 
intermediate levels. Moreover, the level of granularity may range from larger to smaller elements. For 
example, a straight-forward approach might check which C language source code function implementations 
have changed. A more elaborate method could also take into account input arguments, in order to analyse 
the context and use more fine-grained elements. 
 
In this test case selection method, we analyse code in the global Control flow graph (CFG) format. CFG is an 
intermediate representation of the structure of a program, which among other things can be used for 
analysing all paths that might be traversed through during execution. In gcc, the CFG is a data structure built 
on top of an intermediate representation. It is a directed graph where nodes represent basic blocks and 
edges represent possible transfer of control flow from one basic block to another.  
 
A basic block is a straight sequence of code with one entry point and one exit point. There are no conditional 
jumps within a basic block. A basic block contains one or more statements, for instance assignment, 
unconditional function call, return, switch or label statements. CFG edges are links between basic blocks and 
represent, for example, simple jumps or fall-thru without branching.  
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Test case selection gets information about the program with the help of gcc plug-ins. A plug-in is an optional 
extension of gcc, a new compilation pass linked to gcc using a shared library. The pass can utilise all the 
information acquired by earlier passes.  
 
Test case selection uses two gcc plug-ins, trace and CFG:  
 

• Trace plug-in instruments the program to output execution trace at run time. When running test 
cases, each test case produces one trace file. Traces consist of CFG elements and are thus easy to 
map to the results of the change analysis.  

• CFG plug-in builds a representation of the global CFG of the program, including basic blocks, edges 
and quite a few other structures, and instruments the program to output the CFG. The CFG does 
not depend on input arguments or runtime events. 

 
These plug-ins can be applied also to other tasks than test case selection.  
 

3.4 SUMMARY 

 
The introduced combination of risk analysis and security testing shows a high potential to improve the 
systematic quality assurance of security critical systems. On one hand side risk analysis provides a proper 
guidance for a systematic test identification and test prioritization. On the other hand side security testing 
and the analysis of security testing results can provide evidence on assumptions that have been made 
during risk analysis. The relationship described in Section 3.2 help to understand the dependencies between 
risk analysis concepts and testing concepts. With sufficient tool support, traceability between risk analysis 
artifacts and testing artifacts can be operationalized and monitored during the system development. For the 
next iteration tool support is planned and the approach will be applied systematically to selected case 
studies. 
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GLOSSARY 

Information Security 
Management System 
(ISMS) 

That part of the overall management system, based on a business 
risk approach, to establish, implement, operate, monitor, review, 
maintain and improve information security 

Process Set of interrelated or interacting activities which transforms inputs into 
outputs 

Residual risk Risk remaining after risk treatment 

Risk Combination of the likelihood of an event and its consequence 

Risk analysis Systematic use of information to identify sources and to estimate the 
risk. 

Risk assessment Overall process of risk analysis and risk evaluation 

Risk avoidance Decision not to become involved in, or action to withdraw from, a risk 
situation 

Risk criteria Terms of reference by which the significance of risk is assessed 

Risk estimation Process used to assign values to the probability and consequences of 
a risk 

Risk evaluation Process of comparing the estimated risk against given risk criteria to 
determine the significance of the risk 

Risk identification Process to find, list and characterize elements of risk. 

Risk management Coordinated activities to direct and control an organization with regard 
to risk. 

Risk optimization Process related to a risk to minimize the negative and to maximize 
the positive consequences and their respective probabilities. 

Risk reduction Actions taken to lessen the probability negative consequences or 
both, associated with a risk 

Risk retention Acceptance of the burden of loss, or benefit of gain from a particular 
risk 

Risk transfer Sharing with another party the burden of loss or benefit of gain, for a 
risk 

Threat A potential source of an incident that may result in adverse changes 
to an asset, a group of assets or an organization 

Vulnerability Weakness in an information system, system security procedures, 
internal controls, or implementation that could be exploited or 
triggered by a threat 
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