

Title: Review of security testing tools

Version: 1.1
Date : 27.6.2011
Pages : 100

Author: Ilkka Uusitalo (VTT)

Reviewers: Fredrik Seehusen, Michel Bourdelles,
Jürgen Großmann/Florian Marienfeld

To: DIAMONDS Consortium

The DIAMONDS Consortium consists of:

Codenomicon, Conformiq, Dornier Consulting, Ericsson, Fraunhofer FOKUS, FSCOM, Gemalto, Get IT,

Giesecke & Devrient, Grenoble INP, itrust, Metso, Montimage, Norse Solutions, SINTEF, Smartesting,

Secure Business Applications, Testing Technologies, Thales, TU Graz, University Oulu, VTT

Status: Confidentiality:

[
[
[
[

X

]
]
]
]

 Draft
 To be reviewed
 Proposal
 Final / Released

[
[
[

 X

]
]
]

 Public
 Restricted
 Confidential

 Intended for public use

 Intended for DIAMONDS consortium only

 Intended for individual partner only

Deliverable ID: D1_1

Title:

Review of Security Testing Tools

Summary / Contents:

Contributors:
Juha Matti Tirila, Tuomo Untinen, Rauli Kaksonen, Ari Takanen, Ami Juuso, Miia Vuontisjarvi
(Codenomicon)

Bruno Legeard, Fabrice Bouquet, Julien Botella, Dooley Nsewolo Lukula (Smartesting)

Ilkka Uusitalo, Matti Mantere (VTT)

Peter Schmitting (FSCOM)

Stephan Schulz (Conformiq)

Ina Schieferdecker, Florian Marienfeld, Andreas Hinnerichs (Fraunhofer FOKUS)

Pekka Pietikäinen (OUSPG)

Wissam Mallouli, Gerardo Morales (Montimage)

Fredrik Seehusen (SINTEF)

Wolfgang Schlicker (Dornier Consulting)

 Copyright DIAMONDS Consortium

Review of security testing tools

Deliverable ID: D1_1

Page : 2 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

TABLE OF CONTENTS

1. Introduction ... 7

2. Behavioral MBT for security testing .. 7

2.1 Behavioral MBT - an introduction .. 7

2.2 Test Design with MBT .. 8

2.2.3 Automated Test Design with MBT in Standardization ... 12

2.3 Modeling For automated test generation .. 12

2.3.1 Modelling of Risk .. 13

2.3.2 Modelling of Functionality ... 13

2.3.3 Modelling of Security Aspects .. 25

2.3.4 Fokus!MBT... 27

3. Extend test coverage using security-oriented test purposes .. 31

3.1 Conformiq approach for testing security properties ... 32

3.2 ETSI approach to security testbeds specific to IPv6 security testing 32

3.2.1 Organization of the work .. 33

3.2.2 Summary ... 38

4. Random, Block-based and Model-based fuzzing .. 39

5. Network Scanning ... 44

5.1 port scanners .. 45

6. Monitoring tools for detecting vulnerabilities ... 46

6.1 Intrusion detection systems .. 46

6.1.1 Network Based Intrusion Detection Systems .. 46

6.1.2 Host Based Intrusion Detection Systems ... 47

6.1.3 Scalability ... 47

6.1.4 Challenges ... 47

6.1.5 Examples of Current Intrusion Detection Systems.. 48

6.2 Network monitoring tools .. 51

6.2.1 Wireshark ... 52

6.2.2 OpenNMS .. 53

6.2.3 OmniPeek .. 54

6.2.4 Clarified Analyzer ... 54

6.2.5 Tcpxtract .. 55

6.3 Business Activity Monitoring ... 56

6.3.1 IBM Business Monitor .. 56

6.3.2 Oracle Business Activity Monitoring ... 57

6.4 database Activity Monitoring ... 58

6.4.1 IBM InfoSphere Guardium .. 58

6.4.2 dbWatch ... 60

6.4.3 DB Audit 4.2.29 .. 61

6.5 Firewalls, Spam and Virus detection tool .. 63

6.5.1 Firewalls ... 63

6.5.2 Virus detection ... 65

6.5.3 Spam Detection and Filtering ... 70

7. Diagnosis and root-cause-analysis tools .. 73

7.1 Diagnosis tools for security testing ... 73

7.1.1 RCAT ... 73

Review of security testing tools

Deliverable ID: D1_1

Page : 3 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

7.1.2 XFRACAS .. 74

7.2 Intrusion prevention systems .. 76

7.2.1 Cisco intrusion prevention system .. 76

8. Tool integration platforms .. 77

8.1 MODELBUS ... 78

8.2 JAZZ ... 80

8.3 Connected Data Objects – CDO ... 81

8.4 EMF STORE .. 82

9. Risk analysis and modeling tools .. 83

9.1 Microsoft THREAT MODELING .. 85

9.2 the coras tool .. 86

9.3 CRAMM - CCTA Risk Analysis and Management Method and Tool .. 88

9.4 MotOrbac.. 90

9.5 GOAT ... 92

9.5.1 VDC editor plugin for GOAT ... 93

9.5.2 TSM editor plugin for GOAT ... 94

9.6 SeaMonster .. 96

10. References ... 97

 FIGURES

Figure 1. The Test Design process with MBT. .. 8
Figure 2. Relationship between both repositories (tests and requirements). ... 10
Figure 3. Main roles in the MBT process. ... 11
Figure 4. Model-Based Test Development [20] .. 12
Figure 5. CORAS Tool Snapshot ... 13
Figure 6 UML state chart with QML action language ... 14
Figure 7. BPMN Example ... 15
Figure 8. Example UML statechart diagram ... 16
Figure 9. Example Object diagram ... 17
Figure 10. UTP example of a test component definition .. 19
Figure 11. ADML and XAML Model infrastucture ... 20
Figure 12. System model example ... 21
Figure 13. Behavioural system model example ... 21
Figure 14. Test Case Designer... 22
Figure 15. Model-editing in Defensics .. 24
Figure 16. Sample UMLsec Deployment Diagram ... 26
Figure 17. UMLsec stereotypes (excerpt) [4] ... 26
Figure 18. secureUML meta model .. 27
Figure 18. The FOKUS!MBT modelling and test generation approach ... 28
Figure 19. The FOKUS!MBT infrastructure .. 29
Figure 20. Conceptual Overview of TestingMM ... 30
Figure 21. Smartesting approach based on security test schemas Error! Bookmark not defined.
Figure 22. Card status ... Error! Bookmark not defined.
Figure 23. Specification-based approach ... 41
Figure 24. Test-case generation .. 42

Review of security testing tools

Deliverable ID: D1_1

Page : 4 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 25. Test target information .. 43
Figure 26. Step 1. Load PCAP file ... 44
Figure 27. Step 2. Select protocol elements .. 44
Figure 28. SNORT IPS Console ... 49
Figure 29. OpenNMS .. 54
Figure 30. IBM Business Monitor configuration.. 57
Figure 31. Oracle BAM ... 58
Figure 32. IBM InfoSphere Guardium user interface ... 59
Figure 33. dbWatch Architecture .. 61
Figure 34. DB audit user interface .. 62
Figure 35. Comodo Firewall ... 64
Figure 36. BitDefender Dashboard ... 67
Figure 37. Antivirus Configuration .. 67
Figure 38. Norton AntiVirus Scan ... 68
Figure 39. Norton Insight Network .. 69
Figure 40. Kaspersky Antivirus ... 70
Figure 41. SPAMfighter Pro Screenshot .. 72
Figure 42. XFRACAS user interface .. 75
Figure 43. Cisco IPS 4270 Sensor ... 77
Figure 44. Model Bus .. Error! Bookmark not defined.
Figure 45. Model Bus process ... Error! Bookmark not defined.
Figure 46. Jazz tool integaration ... Error! Bookmark not defined.
Figure 47. Connected data objects ... Error! Bookmark not defined.
Figure 48. EMF Store .. Error! Bookmark not defined.
Figure 49. Test Purpose in TPLan .. Error! Bookmark not defined.
Figure 50. IPv6 Test Method ... Error! Bookmark not defined.
Figure 51. Tunnel Mode .. Error! Bookmark not defined.
Figure 52. Transport Mode .. Error! Bookmark not defined.
Figure 53. Testbed architecture .. Error! Bookmark not defined.
Figure 54. Screenshot of SDL Threat Modeling Tool [52] .. 85
Figure 55. Screenshot of the CORAS tool ... 87
Figure 56, Screenshot of CRAMM [53] .. 89
Figure 57. The Or-BAC model .. 91
Figure 58. MotOrBAC user interface .. 92
Figure 59. GOAT user interface ... 93
Figure 60. Vulnerability detection condition for “Use of tainted value to malloc” in GOAT 94
Figure 61. Graphical representation of IP blocking security rule .. 96
Figure 62, SeaMonster screen capture .. 97

 TABLES

Table 3.1: Language key words .. Error! Bookmark not defined.
Figure 22 Card status .. Error! Bookmark not defined.

Review of security testing tools

Deliverable ID: D1_1

Page : 5 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

HISTORY

Vers. Date Author Description

0.1 4/2011 Ilkka Uusitalo Template created

0.2 4/2011 Ilkka Uusitalo First inputs collected

0.3 5/2011 Ilkka Uusitalo Second round of inputs collected, first integration

0.4 18.5.201
1

Ilkka Uusitalo First integration for review

APPLICABLE DOCUMENT LIST

Ref. Title, author, source, date, status DIAMONDS ID
1

Review of security testing tools

Deliverable ID: D1_1

Page : 6 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

EXECUTIVE SUMMARY

The DIAMONDS project focuses on model-based security testing of networked systems to validate
their dependability in face of malice, attack, error or mishap. Testing is the main method to reliably
check the functionality, robustness, performance, scalability, reliability and resilience of systems as
it is the only method to derive objectively characteristics of a system in its target environment. In
this document we discuss the state-of-the art in security testing tools.

Model- based Testing is the approach of deriving systematic tests on a system based on the formal
description of system information. These models may describe the behaviour of the system, securi-
ty constraints (for example access control), the security requirements, or information about possi-
ble security threats, faults or attacks. In chapter 2 we give an introduction to behavioral model-
based testing tools, an umbrella of approaches that make use of models in context of testing. The
Fokus!MBT tool is discussed in more detail in chapter 2. After this, in chapter 3, Smartesting and
Conformiq describe their approaches for testing security properties.

In Section 4 both open-source and commercial random, block-based and model-based fuzzing
tools are described. Sections 5 discusses network scanning while Section 6 focuses on tools for
detecting vulnerabilities, such as IDS/IPS and network monitoring. Section 7 analyses diagnosis
and root-cause analysis tools, and Section 8 is all about tool integration platforms. We conclude
the document with a discussion on risk analysis and modeling tools in Section 9. of this document
describe different models used in security testing.

Review of security testing tools

Deliverable ID: D1_1

Page : 7 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

1. INTRODUCTION

This document is a state of the art review on security testing tools for the Diamonds project. The

goal of the document is to survey existing security tools from the project’s point-of-view, that is, the

emphasis is on model-based security testing tools.

We begin with an introduction to behavioral model-based testing, an umbrella of approaches that

make use of models in context of testing. After this, Smartesting and Conformiq describe their ap-

proaches for testing security properties.

In Section 4 both open-source and commercial random, block-based and model-based fuzzing

tools are described. Sections 5 discusses network scanning while Section 6 focuses on tools for

detecting vulnerabilities, such as IDS/IPS and network monitoring. Section 7 analyses diagnosis

and root-cause analysis tools, and Section 8 is all about tool integration platforms. We conclude

the document with a discussion on risk analysis and modeling tools in Section 9.

Static Application Security Testing (SAST) tools are out of the scope of this document.

2. BEHAVIORAL MBT FOR SECURITY TESTING
Testing of security aspects is heavily tied to the operation or behaviour exhibited by a system to be
tested. Therefore – especially in the commercial model-based testing (MBT) tool landscape – MBT
tools used for functional testing are the driver also for testing security aspects. The following sec-
tions provide a brief introduction in current MBT approaches.

2.1 BEHAVIORAL MBT - AN INTRODUCTION

Model-based testing (MBT) is an umbrella of approaches that makes use of models in the context
of testing. In the area of test design, model-based testing tools for assessing system behaviour in
functional testing can be categorized into the 3 main categories [1]:

• Test Data Generators – generate test data for the creation of logical and/or abstract test
cases

• Test Case Editors – tools, which, based on an abstract model of a test-case, creates one or
more test-cases for manual execution or test scripts for automated execution

• Test Case Generators - tools, which, automatically, create test-cases, test scripts or, even,
complete test suites, using configurable coverage criteria, based on a model of the system
behaviour, the system environment or of tests and specific control information

There are several reasons for the growing interest in using model-based testing:

• The complexity of software applications continues to increase, and the user’s aversion to
software defects is greater than ever, so our functional testing has to become more and
more effective at detecting bugs;

• The cost and time of testing is already a major proportion of many projects (sometimes ex-
ceeding the costs of development), so there is a strong push to investigate methods like
MBT that can decrease the overall cost of test by designing as well as executing tests au-
tomatically;

Review of security testing tools

Deliverable ID: D1_1

Page : 8 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

• The MBT approach and the associated tools are now mature enough to be applied in many
application areas, and empirical evidence is showing that they can give a good ROI.

Model-based testing renews the whole process of functional software testing: from requirements to
the test repository, with manual or automated test execution. It supports the phases of designing
and generating tests, documenting the test repository, producing and maintaining the bi-directional
traceability matrix between tests and requirements, and accelerating test automation.
This section addresses these points by giving a realistic overview of model-based testing and its
expected benefits. It discusses what model-based testing is, how you have to organize a process
and a team to use MBT, and which benefits it may expect from this software testing approach.

2.2 TEST DESIGN WITH MBT

Test design with model-based testing refers to the processes and techniques for the automatic
derivation of abstract test cases from abstract formal models, via the generation of concrete tests
from abstract tests, and to the manual or automated execution of the resulting concrete test cases.
Therefore, the key points of automated test design with model-based testing are the modeling prin-
ciples for test generation, the test generation strategies and techniques, and the implementation of
abstract tests into concrete, executable tests. A typical deployment of MBT in industry goes
through the four stages shown in Figure 1:

Figure 1. The Test Design process with MBT.

1. Design a functional test model. The model, sometimes called the test model, represents
the expected operational behavior of the system under test (SUT) or the system environ-
ment or usage. The choice must be done by the controls and observations elements pro-
vided by the SUT. Standard modeling languages such as UML can be used to formalize the
control points and observation points of the system, the expected dynamic behavior of the
system, the entities associated with the test, and some data for the initial test configuration.
Model elements such as transitions or decisions are linked to the requirements, in order to

Review of security testing tools

Deliverable ID: D1_1

Page : 9 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

ensure bi-directional traceability between the requirements and the model, and later to the
generated test cases. Models must be precise and complete enough to allow automated
derivation of tests from these models;

2. Select some test generation criteria. There are usually an infinite number of possible
tests that could be generated from a model, so the test analyst chooses some test selection
criteria to select the highest-priority tests, or to ensure good coverage of the system behav-
iors. One common kind of test selection criteria is based on structural model coverage, us-
ing well known test design strategies such as equivalence partitioning, cause-effect testing,
pairwise testing, process cycle coverage, or boundary value analysis (see [1] for more de-
tails on these strategies). Another useful kind of test generation criteria ensures that the
generated test cases cover all the requirements, possibly with more tests generated for re-
quirements that have a higher level of risk. In this way, model-based testing can be used to
implement a requirement and risk-based testing approach. For example, for a non-critical
application, the test analyst may choose to generate just one test for each of the nominal
behaviors in the model and each of the main error cases; but for one of the more critical re-
quirements, she/he could apply more demanding coverage criteria to ensure that this part
of the test model is more thoroughly tested;

3. Generate the tests. This is a fully automated process that generates the required number
of (abstract) test cases from the test model. Each generated test case is typically a se-
quence of high-level SUT actions, with input parameters and expected output values for
each action. These generated test sequences are similar to the high-level test sequences
that would be designed manually in action-word testing [2]. They are easily understood by
humans and are complete enough to be directly executed on the SUT by a manual tester.
The test model allows computing the expected results and the input parameters. Data ta-
bles may be used to link some abstract value from the model with some concrete test val-
ue. To make them executable using a test automation tool, a further concretization phase
automatically translates each abstract test case into a concrete (executable) script [3], us-
ing a user-defined mapping from abstract data values to concrete SUT values, and a map-
ping from abstract operations into test adaptation API calls. For example, if the test execu-
tion is via the GUI of the SUT, then the action words are linked to the graphical object map
using a test robot – in this case the test adaptation. If the test execution of the SUT is API-
based, then the action words need to be implemented on this API. This can be a direct
mapping or a more complex adaptation layer. The expected results part of each abstract
test case is translated into oracle code that will check the SUT outputs and decides auto-
matically on a test pass/fail verdict. The tests generated from the test model may be struc-
tured into multiple test suites, and published into standard test management tools. Mainte-
nance of the test repository is done by updating the test model, then automatically regener-
ating and republishing the test suites into the test management tool;

4. Execute the tests. The generated concrete tests are typically executed either manually or
within a standard automated test execution environment. Either way, the result is that the
tests are executed on the SUT, and we find that some tests pass and some tests fail. The
failing tests indicate a discrepancy between the SUT and the expected results designed in
the test model, which then needs to be investigated to decide whether the failure is caused
by a bug in the SUT, or by an error in the model and/or the requirements. Experience
shows that model-based testing is good at finding SUT errors, but is also highly effective at
exposing requirements errors [1], even way before executing a single test (thanks to the
modeling phase).

Review of security testing tools

Deliverable ID: D1_1

Page : 10 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

2.2.1.1 Requirements traceability

The automation of bidirectional traceability between requirements and test cases is a key aspect of
the added value of MBT. Bidirectional traceability is the ability to trace links between two parts of
the software development process with respect to each other. The starting points of the MBT pro-
cess are, as usual, the informal functional requirements, use cases, descriptions of business pro-
cesses and all other factors that provide the functional description of the application being tested.
To be effective, requirements traceability implies that the requirements repository should be struc-
tured enough so that each individual requirement can be uniquely identified. It is desirable to link
these informal requirements to the generated tests, and to link each generated test to the require-
ments that it tests.
A best practice in MBT, supported by most of the tools on the market, consists of linking model
elements such as decision points and transitions to the relevant requirements. From these links in
the test model, test generation tools ensure the automatic generation and maintenance of the
traceability matrix between requirements and test cases.

2.2.1.2 Test repository and test management tools

The purpose of generating tests from the test model is to produce the test repository. This test re-
pository is typically managed by a test management tool. The goal of such a tool is to help organ-
ize and execute test suites (groups of test cases), both for manual and automated tests.

Figure 2. Relationship between both repositories (tests and requirements).

In the MBT process, the test repository documentation is fully managed by automated generation
(from the test model): documentation of the test design steps, requirements traceability links, test
scripts and associated documentation are automatically provided for each test case. Therefore, the
maintenance of the test repository needs to be done in the test model.

2.2.1.3 Roles in the test design process with MBT

One way to define processes for test design with MBT is to think of it as involving three main roles
(see Figure 3).

Functional
requirements

repository

Test
repository

Bidirectional traceability

Tests creation

Model-Based Testing

Review of security testing tools

Deliverable ID: D1_1

Page : 11 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 3. Main roles in the MBT process.

1. The Test Analyst interacts with the customers and subject matter experts regarding the re-
quirements to be covered, and then develops the test model. He/she then uses the test
generation tool to automatically generate tests and produce a repository of test suites that
will satisfy the project test objectives.

2. The Subject Matter Expert is the reference person for the SUT requirements and business
needs, and communicates with the test analyst to clarify the specifications and testing
needs.

3. The Test Engineer may be a tester for manual test execution or a test automation engi-
neer, who is responsible for connecting the generated tests to the SUT so that the tests can
be executed automatically. The input for the test engineer is the test repository generated
automatically by the test analyst from the test model.

The test analyst is responsible of the quality of the test repository in terms of coverage of the re-
quirements and fault detection capability. So the quality of his/her interaction with the subject mat-
ter expert is crucial. In the other direction, the test analyst interacts with the test engineer to facili-
tate manual test execution or test automation (implementation of keywords or the action words).
This interaction process is highly iterative.

2.2.1.4 Testing nature and levels

MBT is mainly used for functional black-box testing, where the SUT is tested against a model, and
any differences in behaviour are reported as test failures. The model formalizes the functional re-
quirements, representing the expected operational behaviour at a given level of abstraction.

Regarding the testing level, the current mainstream focus of MBT practice for automated test de-
sign is system testing (including end-to-end and component testing) and acceptance testing, rather
than unit or module testing. Integration testing is considered at the level of the integration of sub-
systems. In the case of a large chain of systems, MBT may address test generation of detailed test
suites for each subsystem, and manage end-to-end testing for the whole chain.

2.2.2 Key factors for success when deploying MBT

Review of security testing tools

Deliverable ID: D1_1

Page : 12 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

The key factors for effective use of MBT are the choice of MBT methods to be used, the organiza-
tion of the team, the qualification of the people involved, and a mature tool chain.

1. Requirements and risks-based method: MBT is built on top of current best practices in
functional software testing. It is important that the SUT requirements are clearly defined, so
that the test model can be designed from those requirements, and the product risks should
be well understood, so that they can be used to drive the MBT test generation.

2. Organization of the test team: MBT is a vector for testing industrialization, to improve ef-
fectiveness and productivity. This means that the roles (for example between the test ana-
lyst who designs the test model, and the test automation engineer who implements the ad-
aptation layer) are reinforced.

3. Team qualification - test team professionalism: The qualification of the test team is an
important pre-requisite. The test analysts and the test automation engineers and testers
should be professional, and have had appropriate training in MBT techniques, processes
and tools.

4. The MBT tool chain: This professional efficient testing team should use an integrated tool
chain, including a MBT test generator integrated with a test management environment and
a test execution automation tool.

2.2.3 Automated Test Design with MBT in Standardization

A number of MBT tool vendors and major industrial users have developed at ETSI a first binding
standard ES 202 951 [20] to unify terminology and define a common set of concepts required to be
supported by MBT tools, modelling styles or modelling notations in order to be suitable for auto-
mated test design.

Figure 4. Model-Based Test Development [20]

2.3 MODELING FOR AUTOMATED TEST GENERATION

Review of security testing tools

Deliverable ID: D1_1

Page : 13 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

A variety of modeling styles, modeling notations, and tools can be used to model or express risk,
functionality, as well as security aspects for test generation.

2.3.1 Modelling of Risk

2.3.1.1 CORAS risk analysis language

Name of the tool The Coras Tool

Tool title phrase CORAS Tool

Developed by SINTEF Norway

Maturity Open source tool

Supported modelling
notations (if applicable)

CORAS risk analysis language

System requirements Java run-time environment

Available coras.sourceforge.net

Miscellaneous

This tool enables specification and analysis of risk models specified based on the concepts of the
CORAS method. It allows specification and creation of weighted associations between risks,
threats, unwanted incidents, and assets.

Figure 5. CORAS Tool Snapshot

2.3.2 Modelling of Functionality

The most widely deployed way of modelling functionality today especially in commercial MBT tools
is UML. However individual MBT tools support usually different parts of UML or even profiles, i.e.,
they allow modelling with different sets of UML diagrams as well as different action languages.

2.3.2.1 QML (Conformiq Modelling Language).

This proprietary UML profile includes UML class diagrams and a subset of the standard UML
statecharts, which includes support of hierarchy. In addition, it features a TTCN-like [58] system
interface specification and type system. Its action language is Java based but extended with MBT
specific concepts, e.g., for requirement annotation and specification of data constraints.

Review of security testing tools

Deliverable ID: D1_1

Page : 14 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 6 UML state chart with QML action language

The Conformiq tool chain allows integration with UML modelling tools such as:

Name of the tool Conformiq Modeller
Tool title phrase Statechart editor
Developed by Conformiq Inc
Maturity Free commercial tool
Supported modelling
notations (if applica-
ble)

Subset of standardized UML statecharts (open action language)

System requirements Linux or Windows
Available www.conformiq.com
Miscellaneous Lightweight tool intended specifically for modelling with QML

Name of the tool Rational Raphsody
Tool title phrase
Developed by IBM
Maturity Commercial product
Supported modelling
notations (if applica-
ble)

UML

System requirements LinuxWindows
Available http://www-01.ibm.com/software/awdtools/rhapsody/
Miscellaneous General UML tool with Java integration

Name of the tool Rational Systems Architect
Tool title phrase
Developed by IBM
Maturity Commercial product

Review of security testing tools

Deliverable ID: D1_1

Page : 15 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Supported modelling
notations (if applica-
ble)

UML

System requirements Linux or windows
Available http://www-01.ibm.com/software/awdtools/swarchitect/websphere/
Miscellaneous General UML tool

Name of the tool Enterprise Architect
Tool title phrase
Developed by Sparx systems
Maturity Commercial product
Supported modelling
notations (if applica-
ble)

UML

System requirements windows
Available http://www.sparxsystems.com.au/
Miscellaneous General UML tool

2.3.2.2 Smartesting’s Modelling Language

The Smartesting CertifyIt MBT tool supports class and object diagrams as well as statecharts an-
notated with UML object constraint language. In addition, BPMN2 can be used expressing work-
flows.

Figure 7. BPMN Example

Review of security testing tools

Deliverable ID: D1_1

Page : 16 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 8. Example UML statechart diagram

Review of security testing tools

Deliverable ID: D1_1

Page : 17 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 9. Example Object diagram

The Smartesting tool chain allows integration with UML modelling tools such as:

Name of the tool Papyrus
Tool title phrase
Developed by CEA LIST
Maturity Open source, under Eclipse Public License
Supported modelling
notations (if applica-
ble)

UML2, DI

System requirements
Available http://www.papyrusuml.org
Miscellaneous

Name of the tool Eclipse BPMN and UML modeller
Tool title phrase
Developed by Eclipse foundation
Maturity Open source
Supported modelling UML & BPMN

Review of security testing tools

Deliverable ID: D1_1

Page : 18 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

notations (if applica-
ble)
System requirements Linux Windows
Available
Miscellaneous

Name of the tool Rational Systems Architect
Tool title phrase
Developed by IBM
Maturity
Supported modelling
notations (if applica-
ble)

UML

System requirements Linux or windows
Available http://www-01.ibm.com/software/awdtools/swarchitect/websphere/
Miscellaneous General UML tool

2.3.2.3 UTP

Name of the tool Fokus!MBT
Tool title phrase
Developed by Fraunhofer FOKUS
Maturity Stable prototype
Supported modelling
notations (if applica-
ble)

UTP (no graphical notations supported)

System requirements Eclipse UML2, version 3.0.0
Available Currently not
Miscellaneous Implementations also available for Papyrus and RSA

“UML Testing Profile is a language for designing, visualizing, specifying, analyzing, constructing,
and documenting the artifacts of test systems. It is a test modeling language that can be used with
all major object and component technologies and applied to testing systems in various application
domains. The UML Testing Profile can be used stand alone for the handling of test artifacts or in
an integrated manner with UML for a handling of system and test artifacts together.” [11]

The UML Testing Profile extends UML with test specific concepts like test components, verdicts,
defaults, etc. These concepts are grouped into concepts for test architecture, test data, test
behavior, and time. Being a profile, the UML testing profile seamlessly integrates with UML: it is
based on the UML metamodel and reuses UML syntax.

The UML Testing Profile is based on the UML 2.0 specification. The UML Testing Profile is defined
by using the metamodeling approach of UML. It has been architected with the following design
principles in mind:

• UML integration: as a real UML profile, the UML Testing Profile is defined on the basis of
the metamodel provided in the UML superstructure volume and follows the principles of
UML profiles as defined in the UML infrastructure volume of UML 2.0.

• Reuse and minimality: wherever possible, the UML Testing Profile makes direct use of the
UML concepts and extends them and adds new concepts only where needed. Only those

Review of security testing tools

Deliverable ID: D1_1

Page : 19 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

concepts are extended/added to UML, which have been demonstrated in the software,
hardware, and protocol testing area to be of central relevance to the definition of test
artifacts and are not part of UML.

Currently, the UTP is under revision by a Revision Task Force at the OMG. The revision process
will be finished with the OMG Technical Meeting in June 2011.

Figure 10. UTP example of a test component definition

2.3.2.4 doATOMSFramework with DSL

Name of the tool doATOMSFramework
Tool title phrase
Developed by Dorner Consulting
Maturity Commercial tool
Supported modelling
notations (if applica-
ble)

UML (Sequence Diagrams, Composite Structure Diagrams), SysML Inter-
nal Blockdefinition diagram (IBD)

System requirements Windows XP SP2 (32 or 64 Bit) or later, sowie .NET Framework 3.5
Available monika.enns@dornier-consulting.com
Miscellaneous

The doAtoms Framework is based on two proprietary modelling languages. The Automotive Do-
main Modelling Language (ADML) allows to specify system models in and the eXtensible Applica-
tion Markup Language (XAML) allows or the design of test case models. The following picture is an
excerpt of the ADML and XAML model infrastructure. It gives the reader a first impression about
the usage of the ADML profile with its dependencies to the implemented Domain Test Activities in
XAML which are mostly instances of either UML Testing Profile metaclasses or ADML types.

Review of security testing tools

Deliverable ID: D1_1

Page : 20 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 11. ADML and XAML Model infrastucture

2.3.2.4.1 System Models

A system model is defined in UML/ADML notation and specifies the behavior and structure of the
system (formal requirements). On the other hand it can be used as an input to generate a test case
model. This is done by means of a model to model transformation. The doATOMSFramework has
a buildin M2M-transformation service based on a UML domain profile that is used to derive rules
for transforming the system domain into the test domain.
In order to generate test cases out of the system model, the system model must comprise at least
a system context diagram, one or more use cases with at least one interaction sequence diagram
assigned, and an optional class diagram, which should define CAN message/signal structures to
be used later for test data generation. The system context is designed as a UML composite struc-
ture diagram or a SysML Internal Blockdefinition diagram (IBD). It defines the ECU infrastructure
with interaction points e.g. flow ports and connectors. Each flow port must have a flowSpecification
where the IN and OUT signals and messages are defined as flowProperties.

Review of security testing tools

Deliverable ID: D1_1

Page : 21 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 12. System model example

The behavioural system model is defined by a set of use cases with one or more assigned interac-
tion sequences. Logical parameters (e.g. ARRequest, ARResponse, OPMode, etc.) are mapped to
the physical CAN signals automatically by a parser generator. While parsing the system model a
semantic and syntax model check will be done. These model checks can assist the system model
designer to verify the model against it’s informal specifications.

Figure 13. Behavioural system model example

2.3.2.4.2 Test Case Models

A test case model can be designed manually, based on existing informal specification. In this case
the doATOMSFramework has a graphical Test Case Designer which can be extended by custom-
ers for individual needs. The Test Case designer uses an activity library where each activity repre-
sents a Test Step. Those Test Step activities can be composed in the designer via drag & drop
technics to arbitrary complex test cases or test suites and saved into a test case model repository.

Review of security testing tools

Deliverable ID: D1_1

Page : 22 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

The Test Case Designer consist of the test case design IDE, the test step activity library and the
test step parameter definition window. Either test cases can be generated out of the UML system
model or they can be designed manually by easily drag and drop test step activities out of the test
step activity library onto the Test Case Designer user interface. When test case design is finished,
the test case can be executed immediately by pressing the “execute WF” button. All designed test
cases can be saved in a test case library by using drag and drop technique. Once a test case is
saved into the library, it can be linked with other testcase in the lib and even executed directly. A
log recorder records all important information, warnings and errors during test case design and
execution in a log database. All log information can be viewed online with LogDBViewer and ex-
ported as XML data for later offline analysis. CAN and LIN databases can be loaded in the appro-
priate DBViewer and then be used for parameterization the CANMessage test step activities or as
test data in the test case generation process.

Figure 14. Test Case Designer

2.3.2.5 Codenomicon Modelling Language

Name of the tool Codenomicon DEFENSICS
Tool title phrase
Developed by Codenomicon

Review of security testing tools

Deliverable ID: D1_1

Page : 23 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Maturity commercial tool
Supported modelling
notations (if applica-
ble)

Java & EBNF

System requirements Windows, Linux
Available http://www.codenomicon.com
Miscellaneous

Codenomicon Defensics performs fuzzing, which means that software testing tools have to be ca-

pable of first creating valid message structures and message sequences, and then altering these

to form nearly-valid messages that systematically anomalize some parts of the information ex-

change to test the target system for robustness. The Codenomicon modelling language is de-

scribed below.

2.3.2.5.1 Extended Backus-Naur form with Java extensions

The core modeling notation is a proprietary extended BNF variant that allows for message ex-
change descriptions. The technique is called Extended BNF, or EBNF. It is described in [7].

An example of Codenomicon proprietary Extended BNF (EBNF):

TLS ClientHello:

client-hello = Handshake: {

 msg_type: { HandshakeType.client_hello },

 body: { @sid-len @cs-len @cm-len (

 !hs:client-version protocol-version

 !hs:client-random Random

 .session_id_length: !sid-len:target uint8

 .session_id: !sid-len:source (!hs:client-session-id SessionID)

 .cipher_suites_length: !cs-len:target uint16

 !cs-len:source !hs:client-cipher-suite !cipher-suite:cipher-type cipher-suites

 .compression_methods_length: !cm-len:target uint8

 !cm-len:source compression-methods

 # RFC4366: TLS Extensions

 .extensions: ()

) }

}

The Extended BNF is used to model the syntax of messages in both binary and textual protocols.
Message sequence-level behavior is also modeled using BNF.

The way Extended BNF works on the message sequence level is that it uses rules to append the
model with callbacks to Java code. Rules are used to:
• Perform I/O operations like connect, send, and receive, on message sequence level.
• Calculate fields like lengths, checksums, sequence numbers, inside protocol messages.

2.3.2.5.2 User sequences

To provide the end user with lots of ready-made test cases - that is, anomalized messages and
message sequences - the users of the Codenomicon test tools may also specify the used message
sequences and/or message content themselves. For this purpose a proprietary XML based se-
quence fileis used. An example sequence file for Session Initiation Protocol (SIP) based interfaces
may look like the following:

Review of security testing tools

Deliverable ID: D1_1

Page : 24 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

<sequences>

 <!-- SIP dialog definitions -->

 <sequence name="used-dialog" setting="user-sequence-file">

 <description name="PUBLISH request">A sequence sending a PUBLISH request

 and expecting a success response.</description>

 <send name="publish-request" type="sip-message" description="PUBLISH request">

 <content file="sip-publish.txx" format="text"/>

 ...

 <store attribute="call-id">...</store>

 ...

 </send>

 <recv name="publish-response-ok" type="sip-message" description="OK response">

 ...

 <match attribute="call-id">!sip:callId $publish-request:call-id</match>

 ...

 </recv>

 </sequence>

</sequences>

The actual content of the send message "publish-request" is specified in a separate file as raw
data. The sequence file specifies that SIP header "call-id" must match the corresponding header
line in the received message. Note that the real sequence specifications contains a lot more details
than included here as the SIP protocol is rather complex.

2.3.2.5.3 Model Editing Capability in Defensics

As seen in a tool screenshot below, the users can launch editors to edit both the sequence models
and the message structures. The models are edited as text.

Figure 15. Model-editing in Defensics

Review of security testing tools

Deliverable ID: D1_1

Page : 25 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

2.3.3 Modelling of Security Aspects

2.3.3.1 UMLsec

Name of the tool UMLsec tool
Tool title phrase
Developed by UMLsec tool group, esp. Jan Jürjens of Technical University of Dortmund
Maturity alpha prototype
Supported modelling
notations (if applica-
ble)

UMLsec

System requirements Windows, Linux
Available http://inky.cs.tu-dortmund.de/main2/jj/umlsectool
Miscellaneous

UMLsec is a profile of the Unified Modeling Language (UML) which attempts to model security as-

pects with formal semantics. Thus, it has the potential to make security testing techniques applica-

ble at the design stage. The goal of this approach is to encapsulate security expertise/best practice

into a UML extension or profile, so system designers can use them to construct secure systems

without being themselves experts in this field. In UMLsec the standard extension mechanism of

UML is used: Stereotypes, tags and values - i.e. labels and key/value pairs, with well-defined se-

mantics - are packaged into a so-called UML profile.

UMLsec is described in [1]. Its aim is to enrich a system’s UML model in such a way, that the cor-

rectness of design and implementation can formally be verified. The profile is the result of experi-

ence in several security-critical industry projects. It was successfully applied in the “analysis of

CEPS, a candidate for a globally interoperable electronic purse standard” and with a “major Ger-

man bank” in the sense that it discovered critical flaws.

The first two UMLsec properties important for the testing perspective is the capability of dealing

with differentiated attacker types. This allows designers to model defaults attackers as well as sys-

tem user attackers or even smart card issuer attackers.

The second is the variety of security-relevant information which is covered by the provided stereo-

types. They fall into three categories: assumptions on the physical level, requirements on the logi-

cal level and policies the system should adhere to. These can be added to any of the following

UML diagrams: activity diagrams, class diagrams, sequence diagrams, state charts, deployment

diagrams, packages. Figure 16 depicts a sample UMLsec deployment diagram, which makes use

of prominent UMLsec stereotypes.

Review of security testing tools

Deliverable ID: D1_1

Page : 26 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

< < encrypted> >

< < encrypted> >

< < internet> >

< < secrecy> >

< < secrecy> >
< < LAN> >

< < high> >

client m achine server

another serverlocal server

w e b
server

em ail
server

client
apps

database
server

Figure 16. Sample UMLsec Deployment Diagram1

A part of the stereotypes introduced by UMLsec are listed in Figure 17. The column Base Class

refers to the UML element that can be enriched with the stereotype indicated in the first column.

Key/value pairs that the stereotype entails are listed in the column Tags, moreover, constraints and

a description are provided in the respective columns. For example <<critical>> can be assigned to

“objects or subsystem instances containing data that is critical in some way” [97], the way in which

a subsystem is critical can be further detailed with the tags {secrecy}, {integrity}, {authenticity},

{fresh}, and {high} indicating the required property.

Figure 17. UMLsec stereotypes (excerpt) [4]

Some work [3] [5] is presented towards tools that automatically verify design constraints. However,

only a subset of those has been implemented, i.e. there is no fully-fledged verification suite availa-

ble. This reflects the academic acceptance of UMLsec, there have been continuous publications

1
 Source: http://www4.in.tum.de/~juerjens/papers/umlsec_tools_short.pdf

Review of security testing tools

Deliverable ID: D1_1

Page : 27 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

since the presentation of the profile in 2002, the authors are, however, clustered around the author

of the original profile.

2.3.3.2 secureUML

SecureUML [6] is another approach to attack security issues at design time. Its focus is narrower

that UMLsec’s: it is limited to enriching UML with access control information. As such it is rather

geared towards the rapid generation of secure systems, than enabling formal verification or testing.

From the access control point of view, secureUML offers an extension of traditional role-based

access control systems (RBAC). Where those are normally limited to static assignment of permis-

sions to roles and roles to users, secureUML allows for the definition of access constraints. These

constraints consider the state of a system in time to evaluate access rights.

The meta-model presented by the secureUML-authors is depicted in Figure 18. The upper left part

covers a classical RBAC-system: permissions are assigned to role and roles to users. Via the link

ProtectedObject these permissions are attached to elements of the system’s UML model. Using

the class AuthorizationConstraint, the permissions associated with a model element can be further

detailed, especially with state information.

Figure 18. secureUML meta model

2.3.4 Fokus!MBT

Fokus!MBT is a flexible and extensible tool chain, which facilitates the development of model-
based testing scenarios for heterogeneous application domains. It is based on a service-oriented
communication infrastructure of loosely coupled services, interoperating with each other in a dis-
tributed environment. Fokus!MBT defines a proprietary testing meta model – called TestingMM. A
test model is the main artifact in a model-based testing approach. It is a formal representation of
test-specific information. A test model is used to increase automation, to avoid ambiguities and to
facilitate test case derivation. The TestingMM represents an integrated data model used for data

Review of security testing tools

Deliverable ID: D1_1

Page : 28 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

and information exchange among the services of the Fokus!MBT tool chain. This allows adapted
services to interoperate with each other as well as it improves the communication flow among in-
volved stakeholders.

Figure 19. The FOKUS!MBT modelling and test generation approach

2.3.4.1 High-level Architecture

Each software development process varies in requirements, used techniques, involved stakehold-
ers and its target environment. Testing is an essential part of the software development processes
of any domain. A domain-specific test process needs to be tailored to its corresponding system
requirements.

Fokus!MBT is a set of compound tools which support the model-based paradigm for testing pur-
poses. It establishes a tooling landscape for the specification, development and documentation of
tailored model-based testing scenarios. Current Fokus!MBT methodologies are based on, but not
limited to well-known and established standards like UML, SysML and the UML Testing Profile.
That allows Fokus!MBT to be applied to a wide range of heterogeneous system development pro-
cesses. Integrating the ModelBus Service Infrastructure gives it greater flexibility and extensibility.
The ModelBus‘ orchestration capabilities make it possible to automate various workflows. Overall
time to market is reduced by significantly decreasing the number of error-prone and resource-
consuming manual tasks.

Review of security testing tools

Deliverable ID: D1_1

Page : 29 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 20. The FOKUS!MBT infrastructure

2.3.4.2 Fokus!MBT Testing Metamodel

A test metamodel integrates relevant concepts to describe tests or test processes. Beside structur-
al aspects and the behavioral usage description of the SUT (system under test), it comprises as-
pects for test data, test execution and test results. Unfortunately, there is no common agreement
about what concepts are considered to be test relevant. We (hence the specification of the Test-
ingMM) have identified the following complementary aspects: test targets/objectives, test architec-
tures, test behavior, test data, test directives, test execution, test results and test strategies.

The most important target during the specification of the integrated testing metamodel was to iden-
tify widely accepted testing concepts, put them into model artifacts and integrate those artifacts
with each other coherently in a structured way, so it would be possible to describe tests precisely
and concisely. This specification phase of TestigMM started by analyzing the MOF-based meta-
model of the UML Testing Profile (UTP), which constitutes the fundament of our test metamodel.
The UTP defines a firm foundation of elementary test concepts, already expressed in a semi-
formal manner. Error! Reference source not found. shows all the concepts the TestingMM cur-
rently provides as well as which languages they were taken from. Additionally, it illustrates the
package structure of TestingMM, since each row header result in a separate package in the meta-
model.

Review of security testing tools

Deliverable ID: D1_1

Page : 30 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

• UML. UML contributes elementary object-oriented concepts like packages, classes, proper-
ties and interfaces. It is also used to provide instances of the TestingMM with a package-
oriented structure, like any MOF or UML model itself.

• UTP. As already mentioned, UTP represents the core for TestingMM, since it defines the
minimal required artifacts for the creation of a test model.

• SysML. The concise and intuitive possibility of expressing requirements inside UML models
have been extracted from SysML. UML itself is not capable of modeling requirements na-
tively.

• TPTP. The metamodel of the Test & Performance Tools Platform, a top level project of the
Eclipse community, is comprises similar but significantly different concepts like the Test-
ingMM. Among others, the concepts for expressing the results of a test case execution in a
model-based manner have been taken from the TPTP metamodel.

• New concepts. The TestingMM was enriched with concepts, which have not been ad-
dressed by other known languages. This is also the reason why we decided to create a
new proprietary metamodel instead of reusing TPTP for example. Each model covers only
some of the concepts we indentified to be test relevant.

However, not all required test relevant aspects could be covered by already existing languages.
Therefore, these aspects had to be developed and included from scratch by ensuring the syntacti-
cal and semantical integrity of the TestingMM. Thus, TestingMM can be seen as a conceptual
merge of the participating languages and newly introduced concepts. In course of this merge we
changed the weak-type manner to a strong-type manner, since pointers to external sources have
been removed consequently in order to keep all information stored within in one model instance
solely.

Figure 21. Conceptual Overview of TestingMM

Review of security testing tools

Deliverable ID: D1_1

Page : 31 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

2.3.4.3 Fokus!MBT Test Services

Out of the box, Fokus!MBT provides services for test case, test data and test code generation. The
test case generator is called Eventeer and relies on conceptually limited UML state machines. As
an example, state machines prepared for Eventeer are not allowed to contain orthogonal compo-
site states. Test case generation is driven by so called test directives. Test directives are instruc-
tions for the derivation engine how to create test cases from the state machine. Currently, Eventeer
provides two very fundamental directives, that are state and transition coverage, which can be con-
figured with an arbitrary percentage. This percentage acts at the same time as stop criterion (if no
more disjunctive criteria are defined). For example, it is possible to configure the test case genera-
tion with a test directive that tries to achieve 80% of transition coverage. Besides the structural
coverage directives for the state machine under consideration, Eventeer provides two generation
methods to drive the pathfinding: random and shortest. The latter one is an implementation of
Dijkstra's A* algorithm.

Eventeer copes with the definition of guard conditions and variable expressions as introduced for
extended finite state machines. As constraint and effect language, a proprietary Java-like notation
is used, which is called Fokus!MBT Constraint and Effect Language (in short: FoCIL, spoken: fos-
sil). FoCIL allows the definition of guard constraints, as well as the textual definition of behavior to
be executed when the transition is fired. FoCIL was developed due to the lack of textual expression
languages in the realm of the UML family that fit the needs to express both constraints and effects.

Eventeer is seamlessly integrated with Fokus!MBT CoDOG, a Constraint-based test data and ora-
cle generator. CoDOG allows the generation of data instances, described by constraints which are
applied on the type of the instances. If, for example, a particular transition is only allowed to fire if
an attribute of a triggering signal satisfies a certain constraint, CoDOG is able to generate data
instances that satisfies the constraint (if possible). Therefore, all applied constraints on a basic type
of the received signal (or in general, classifier) is gathered in translated into the CoDOG constraint
satisfactory metamodel (CSM). The CSM is augmented with all necessary information which may
further restrict the allowed domain of the test data instance. This includes both actual attribute val-
ues of the context of the executed state machine, and the constraints of the guard condition, if the
expression in the guard references the received signal. The complete CSM is passed into the
CoDOG solving engine, which creates at least one solution variable (or more, or none, if the prob-
lem description was not solvable).

In combination, Eventeer and CoDOG allow the generation of fully executable test cases, automat-
ically derived from a tailored UML state machine. Those test cases are represented as TestingMM
interactions, a simplified implementation of the UML interactions. For the execution of the test cas-
es, Fokus!MBT integrates a TTCN-3 code generator, which derives TTCN-3 test scripts out of
TestingMM instances, which might be executed in a particular TTCN-3 execution environment (e.g.
TTworkbench from Testing Technologies IST).

3. EXTEND TEST COVERAGE USING SECURITY-ORIENTED TEST PUR-
POSES
The Smartesting approach for testing security properties is discussed in D1.WP2 [59]. In this sec-
tion we explain the principle and tool that Conformiq adopts for testing security properties and the
methodology the ETSI has used to test security features of the IPV6 protocol.

Review of security testing tools

Deliverable ID: D1_1

Page : 32 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

3.1 CONFORMIQ APPROACH FOR TESTING SECURITY PROPERTIES

Name of the tool Conformiq Designer
Tool title phrase Automated Test Design
Developed by Conformiq Inc
Maturity Commercial Product
Supported modelling
notations (if applica-
ble)

QML (= UML Class Diagrams + UML StateCharts + proprietary (TTCN
oriented) type system and system interface specification + proprietary Ja-
va-based UML action language) and proprietray tabular Use Case specifi-
cation format

System requirements Either standalone Windows or Linux executable or Eclipse Plugin
Available www.conformiq.com
Miscellaneous MBT Functional Test Case Generator

Conformiq Designer offers the ability to specify “use cases” separately from the modeled behavior

– sometimes also referred to as test purposes. These use cases represent partial or full sequences

of message exchanges with restrictions on data based on the specified system interface.

A use case in Conformiq describes essentially a high level, usually partial I/O sequence that a sys-

tem under test (i.e., the black box) is expected to reproduce. For each message in such a se-

quence the message type and the port (as specified in the system interface specification of the

model capturing the system operation) and expected time stamp have to be specified. By default

any message contents are accepted for a message but can be refined by further constraining the

message field values to specific values. Secondly, one or more so called “gaps” (represented by

the asterisk symbol) can be inserted into any point at these sequence to express that any message

can arrive or be sent on any port before the next message in the sequence occurs in a generated

test. Besides the reuse of the system interface specification, use case specification is completely

independent of the specification of functional behavior, i.e., it is possible to specify use case or

(partial) message sequences that do not comply or violate to specified system operation.

Once specified use cases can be selected in Conformiq Designer as coverage criteria for models

specifying system operation, i.e., marked to be specifying sequences that must be realizable via

the modeled system behavior as well as cases that shall not be realizeable. In case use cases are

marked as targets Conformiq Designer will enforce that at least one but possibly more tests (de-

pending on other selected coverage criteria) are produced in the test generation process. Use cas-

es can also be used to encode security oriented test purposes or test patterns by expressing the

security property to be verified in one or more use cases.

3.2 ETSI APPROACH TO SECURITY TESTBEDS SPECIFIC TO IPV6 SECURITY
TESTING

The present clause describes the structure and the implementation of an automatic testbed for

testing security procedures within the scope of the Internet Protocol version 6 (IPv6), namely IP

Authentication Header (AH) defined in RFC 4302 [22], IP Encapsulating Security Payload (ESP)

defined in RFC4303 [23] and the Internet Key Exchange (IKEv2) Protocol defined in RFC4306 [24].

The named procedures are working under the framework of RFC4301 [21] which defines the "Se-

curity Architecture for the Internet Protocol".

Review of security testing tools

Deliverable ID: D1_1

Page : 33 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

The work was performed under the umbrella of a Specialized Task Force (STF) of ETSI’s Tech-

nical Committee MTS (Methods for Testing and Specification) and was co-funded by EC/EFTA.

Where the STF was originally tasked to produce conformance tests which usually concentrate on

the communication on a given interface (messages formats, message sequences, etc.) the out-

come of the project developed a stronger relation to security testing while testing IPV6 properties.

Especially for testing the IKEv2 functionality all the concepts of that technology (public and private

keys, “the seven secrets”, etc) had to be modeled in TTCN-3 on top of the management of the

message exchanges. Another task was naturally the handling of the encrypted IPv6 packets to

allow their observation and interpretation in the testbed environment. All the above added many

characteristics to the conformance tests that are usually addressed in functional testing.

3.2.1 Organization of the work

3.2.1.1 Requirements Catalogue

As a first step the relevant RFC documents were analyzed and a set of about 700 requirements

were derived. This work was done with the resulting requirements being named, labeled (mandato-

ry, optional, conditional) and categorized by device for which they apply. This requirement cata-

logue was published in ETSI TS 102 558 [25].

3.2.1.2 Test Suite Structure and Test Purposes

In the next step Test Purposes (TP) were written for IPv6 nodes according to the Requirements of

the Requirements Catalogue in TS 102 558 [25]. Test purposes have been written for behaviours

requested with "MUST" or "SHOULD", optional behaviour described with "MAY" or similar wording

indicating an option was not turned into test purposes.

Furthermore, as one TP could cover several requirements, the overall number of TPs totaled at

103 covering all the mandatory requirements with the following split:

• AH 12 TPs

• ESP 15 TPs

• IKEv2 76 TPs

TPs were organized in the Test Suite Structure (TSS). For AH and ESP TPs no further sub-

grouping was done but for the IKEv2 TPs the following sub-structuring was applied:

• Group 1 Exchange Message Structures

• Group 2 IKE Header and Payload Formats

• Group 3 IKE Informational Exchanges

• Group 4 IKE Protocol

All TPs were written manually using TPLan, a formal notation explicitly developed by ETSI for the

definition of TPs in a standardized format allowing global consistency within the TP document

through the use of pre-defined key words for conditions and actions. Following an example:

Review of security testing tools

Deliverable ID: D1_1

Page : 34 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Test Purpose
Identifier: TP_SEC_6407_01

Summary: Test of generating CREATE_CHILD_SA request
References: RQ_002_6407, RQ_002_6035, RQ_002_6084, RQ_002_6085, RQ_002_6086, RQ_002_6128,

RQ_002_6129, RQ_002_6232, RQ_002_6233, RQ_002_6236, RQ_002_6240, RQ_002_6250,
RQ_002_6263, RQ_002_6344

IUT Role: Host Test Case: TC_SEC_6407_01
with { IUT having completed IKE_SA_INIT exchange

 and IUT having completed IKE_AUTH exchange

 }

ensure that

 { when { IUT is requested to send CREATE_CHILD_SA_request }

 then { IUT sends CREATE_CHILD_SA_request

 containing (IKE_Header

 containing IKE_SA_Initiators_SPI

 set to IKE_SA_Initiators_SPI

 sent or received in the IKE_SA_INIT_request

 and containing IKE_SA_Responders_SPI

 set to IKE_SA_Responders_SPI

 sent or received in the IKE_SA_INIT_response

 and containing Major_Version set to 2

 and containing Exchange_Type set to 36 CREATE_CHILD_SA

 and containing Flags set to 00010000'B'

 and containing Message_ID

 set to previous sent Message_ID plus 1)

 and containing (Encrypted_payload

 containing (Security_Association_payload

 containing at least 1 proposal

 containing at least 1 transform)

 and containing (Nonce_payload

 containing Nonce_Data

 of at least 128 bits

 and 'at least half the

 prf key length')

 and containing Traffic_Selector_payload_initiator

 'Next Payload field of previous

 payload is set to 44'

 and containing Traffic_Selector_payload_responder

 'Next Payload field of previous

 payload is set to 45')}

 }

Figure 22. Test Purpose in TPLan

For further information on TPlan see ETSI ES 202 553.

The TPs were published in ETSI TS 102 593 [26].

Using this form of test purpose description allows for the mere expression of message exchanges

with encryption information only being mentioned verbally by adding the fact that a message or a

message filed is encrypted, see above keyword: “encrypted payload”. The way of encryption (en-

cryption algorithm, keys) is to be determined dynamically during the test execution, as it varies

widely between the key factors used during the negotiation processes. This is an aspect that

shows the limits of the traditional approach to test purpose production when an additional test di-

mension, i.e. encryption information is added to the description of message exchanges.

3.2.1.3 Abstract Test Suite

The TPs were used as the base for the Abstract Test Suite (ATS) written in TTCN-3 as published

in ETSI TS 102 594 [27].

An Abstract Test Method (ATM) as shown in figure 1 with a set of rules was defined at the start of

Review of security testing tools

Deliverable ID: D1_1

Page : 35 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

the ATS work:

PTCn
IPv6

 TTCN-3

PTC02
IPv6

 TTCN-3

PTC01
IPv6

 TTCN-3 Blackbox
(IUT)

Action
Trigger

SUT

PTCn+1
TTCN-3

MTC

Sync ports

Event
Indication

Test System

Upper Tester
Application

MAC

Test Adapter

cf ip cf ip ip cf ut

TSI eth TSI cf TSI ut

Figure 23. IPv6 Test Method

Rules for the Main Test Component (MTC) and the Parallel Test Components (PTC):

• MTC, PTC01, PTC02 to PTCn run MAC-independent TTCN-3 code.

• Each PTC has 1 cf port and 1 ip port.

• Any IPv6 message (unicast, multicast, all-nodes etc.) is sent via the ip port.

• Configuration messages are sent via the cf port in order to configure the test adapter.

• 1 and the same TSI cf port is mapped to all cf ports.

• 1 and the same TSI eth port is mapped to all ip ports.

• TTCN-3 uses ut port to control the Upper Tester Application.

• The Upper Tester Application allows to configure the IUT, trigger IUT actions and observe

IUT events.

• MTC, PTC01, PTC02 to PTCn and its Test Adapter with MAC form the Lower Tester.

• MTC, PTCn + 1 and its Test Adapter with Upper Tester Application form the Upper Tester.

• Upper Tester implementation is not relevant for the prototype.

Two configurations were developed to test the two different modes for secured packet exchange,

tunnel mode and transport mode. They are described in figures 2 and 3.

Tunnel mode:

Review of security testing tools

Deliverable ID: D1_1

Page : 36 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

The endpoints of communication are HS02 and NUT. Tunnel Start is RT01, Tunnel End is NUT. In

the case where security parameters are negotiated with IKEv2, it is RT01 which negotiates the IKE

security association.

NUT
IKE negotiator

RT01
IKE negotiator

Net A

Test System PTC01

HS02
Communication

Endpoints

secured
connection

Figure 24. Tunnel Mode

Transport mode:

The endpoints of communication are HS02 and NUT. In the case where security parameters are

negotiated with IKEv2, it is HS02 which negotiates the IKE security association. RT01 forwards all

communication from and to HS02.

NUT
Ike negotiator

Net A

Test System PTC01

HS02
Ike negotiator

RT01

Communication
Endpoints

secured
connection

Figure 25. Transport Mode

The encryption algorithms for the IPv6 frames were not covered directly in the TTCN-3 code. Only

the information about the negotiated factors were passed from the TTCN-3 code to the test adapter

Review of security testing tools

Deliverable ID: D1_1

Page : 37 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

where based on this input decryption and encryption took place. As a result, the TTCN-3 code did

only deal with plain text messages and was unaware of the decoded messages. The advantages

of “hiding” the en- and decryption into the test management eased the interpretation of the test

results during test execution for the test operator for whom it would naturally be impossible to un-

derstand the content encrypted frames. From the total of 103 TPs a set of 13 were not implement-

ed in the ATS due to the chosen ATM or other restrictions.

3.2.1.4 Test Environment

After the implementation of the ATS in TTCN-3 had finished, the integration into the test bed was

performed. This included the production of a codec to code/decode the exchanged IPv6 frames

taking into account the encryption algorithms in use.

To complement the test system the Test Adapter (TA) which connects the abstract test configura-

tion of the ATS to the physical reality of the test bed was implemented. A set of TA requirements

was defined to allow effective testing:

• TA shall receive the AtsIpv6_TestConfiguration_TypesAndValues.CfMessage from every

participating PTC.

• TA shall set a MAC filter in order to capture IPv6 messages only.

• When receiving an IPv6 message from TRI, the TA shall:

o assemble a MAC message containing the IPv6 message and the appropriate Mac

Addresses; and

o send the MAC message to the appropriate network device (MAC interface).

• When receiving a MAC message a network device, the TA shall:

o extract the IPv6 message; and

o queue the IPv6 message to the appropriate PTC.

The following figure 4 shows the overall architecture of the test bed:

Review of security testing tools

Deliverable ID: D1_1

Page : 38 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 26. Testbed architecture

With this architecture it was possible to validate all the abstract test cases developed. This was

done against a set of IPv6 implementations that were freely available through the internet.

3.2.2 Summary

The project developing the IPv6 testbed used traditional, i.e. mainly manual methods for producing

the test specifications (Requirements, TP, ATS). This proved to be a time consuming task which

may have been shortened by the use of models and automated procedures. However, at the time

of the project and due to the relative complexity of the protocols under test (especially IKEv2), the

manual method was the only option at hand.

As the encryption and decryption functionalities where transparent to the TTCN-3 code interpreta-

tion and validation of the test results remained independent of the encryption algorithm in use and

allowed timely analysis of the test traces.

The TTCN-3 editor used was the Testing Technologies TTWorkbench Professional software that

was then also used for the execution of the tests and for reporting the test results.

Review of security testing tools

Deliverable ID: D1_1

Page : 39 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

4. RANDOM, BLOCK-BASED AND MODEL-BASED FUZZING

Fuzzing is relevant to Diamonds as it is the key technology used to detect unknown zero-day vul-
nerabilities in security testing. Fuzzing enables software testers, developers and auditors to easily
find defects that can be triggered by malformed inputs via external interfaces. This means that
fuzzing is able to cover the most exposed and critical attack surfaces in a system relatively well,
and identify many common errors and potential vulnerabilities quickly and cost-effectively. [60]

Fuzzing tools can be divided to four simple categories:

• Random Fuzzing

• Block-based Fuzzing

• Specification-based Fuzzing (Model-based)

• Template-based Fuzzing (Model-based)

In this chapter we will show an example of some of these.

Random Fuzzing

In his talk in the CanSecWest 2010 Dr. Charlie Miller [57] used random fuzzer which was just '5

lines of python'. The algorithm is to pick a number between 1 and (file length / 10) and randomly

corrupt that many bytes in random locations. Charlie Miller comments on his slides that the ap-

proach is “so retarded” it shouldn't find any bugs at all. According to the talk, “Miller's fuzzer quickly

uncovered 20 vulnerabilities across a range of applications as well vulnerabilities in Apple's Mac

OS X 10.6, aka Snow Leopard, and its Safari browser. He also found the flaws in Microsoft's Pow-

erPoint presentation maker; in Adobe's popular PDF viewer, Reader; and in OpenOffice.org, the

open-source productivity suite.” [29] [30]

Block-based Fuzzing

Peach is an open source fuzzing framework used to build fuzzing tools.

Name of the tool Peach Fuzzer
Tool title phrase Peach Fuzzer uses block-based models for fuzzing
Developed by Michael Eddington
Maturity Open source
Supported modelling
notations (if applica-
ble)

Proprietary PIT files, which include ASN.1, XML and BNF support

System requirements Cross-platform
Available http://peachfuzzer.com/
Miscellaneous

Model-based fuzzing (both specification and template based approaches)

Review of security testing tools

Deliverable ID: D1_1

Page : 40 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Name of the tool Defensics 3.13
Tool title phrase Codenomicon DEFENSICS™ test platform provides preemptive security

and robustness for Internet, wireless and digital media systems
Developed by Codenomicon
Maturity In commercial use since 2001
Supported modelling
notations (if applica-
ble)

• RAW ASCII

• BNF

• ABNF

• ASN.1

• XML/Schema

• PCAP

• PDML

• EBNF

• XML Sequences

System requirements Cross-platform
Available http://www.codenomicon.com/defensics/
Miscellaneous Supports 200+ protocols

Since 2001, Codenomicon DEFENSICS™ test platform has been applying fuzzing techniques to

provide preemptive security testing for network equipment manufacturers, operators, consumer

electronics companies, enterprises and governmental organizations. Codenomicon DEFENSICS™

3 bundles our accumulated experience from the past decade and takes security testing to a com-

pletely new level. The latest release of the test generation engine is 3.13 (March 2011).

The first figure shows the specification-based approach, where the model is built from protocol

interface specifications. The model is pre-built by Codenomicon, but the user can edit both mes-

sage sequences and the actual messages sent and received by the tool.

Review of security testing tools

Deliverable ID: D1_1

Page : 41 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 27. Specification-based approach

After model parameters are chosen, the test generator creates the test cases:

Review of security testing tools

Deliverable ID: D1_1

Page : 42 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 28. Test-case generation

In specification-based fuzzing, the tool user only needs to configure the required information about

test target, as shown in the third figure:

Review of security testing tools

Deliverable ID: D1_1

Page : 43 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 29. Test target information

The third figure shows the steps of using Defensics to create a protocol model from captured net-

work traffic (template based fuzzing).

Step 1: Load PCAP file with network traffic and select the protocol you want to test:

Review of security testing tools

Deliverable ID: D1_1

Page : 44 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 30. Step 1. Load PCAP file

Step 2: Protocol model and thousands of tests are automatically created, and the user only needs

to select what elements from the protocol he wants to test:

Figure 31. Step 2. Select protocol elements

Test execution and reporting work the same way as with specification-based fuzzers.

5. NETWORK SCANNING
A vulnerability scanner is a computer program designed to assess computers, computer systems,
networks or applications for weaknesses. There are a number of types of vulnerability scanners
available today, distinguished from one another by a focus on particular targets. While functionality
varies between different types of vulnerability scanners, they share a common, core purpose of
enumerating the vulnerabilities present in one or more targets. Vulnerability scanners are a core
technology component of vulnerability management. [31]

Review of security testing tools

Deliverable ID: D1_1

Page : 45 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Vulnerability scanners can be divided into several categories: port scanners, network enumerators,
network vulnerability scanners, web application security scanners.

5.1 PORT SCANNERS

Name of the tool Nmap

Tool title phrase Nmap (Network Mapper)

Developed by Gordon Lyon

Maturity Stable, active

Supported modelling
notations (if applicable)

XML output

System requirements Cross-platform

Available http://nmap.org

Miscellaneous

Nmap is the most commonly used port scanning software, as it is state-of-the art in most aspects
of security scanning. It can be used to discover hosts and services on a computer network, detect
version numbers of services, as well as operating systems.

Name of the tool Nessus

Tool title phrase Nessus Vulnerability Scanner

Developed by Tenable Network Security

Maturity Commercial product

Supported modelling
notations (if applicable)

XML output

System requirements Cross-platform

Available http://www.nessus.org

Miscellaneous

Nessus is a comprehensive vulnerability scanning program. It is free of charge for personal use in

a non-enterprise environment. Its goal is to detect potential vulnerabilities on the tested systems.

For example:

• Vulnerabilities that allow a remote cracker to control or access sensitive data on a system.

• Misconfiguration (e.g. open mail relay, missing patches, etc).

• Default passwords, a few common passwords, and blank/absent passwords on some system

accounts. Nessus can also call Hydra (an external tool) to launch a dictionary attack.

• Denials of service against the TCP/IP stack by using mangled packets

Name of the tool OpenVAS

Tool title phrase Open Vulnerability Assessment System

Developed by Greenbone Networks

Maturity Stable, active

Supported modelling
notations (if applicable)

Review of security testing tools

Deliverable ID: D1_1

Page : 46 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

System requirements Cross-platform

Available http://www.openvas.org/

Miscellaneous

OpenVAS is a fork of the Nessus scanner from the last GPL-licensed version, Nessus 2. It is a is a

framework of several services and tools offering a comprehensive and powerful vulnerability scan-

ning and vulnerability management solution.

The actual security scanner is accompanied with a daily updated feed of Network Vulnerability

Tests (NVTs), over 20,000 in total (as of January 2011).

6. MONITORING TOOLS FOR DETECTING VULNERABILITIES

6.1 INTRUSION DETECTION SYSTEMS

Intrusion detection systems (IDS) can be divided into roughly two categories, those two categories
being network based and host based intrusion detection systems (NIDS and HIDS respectively).
IDSs also include intrusion prevention systems (IPS), which are subset of the IDS. IPSs are IDSs
with mechanisms built into them that can be used to respond to an intrusion. Intrusion detection
systems report suspicious activity to the analyst in the form of alerts. The analyst’s task is then to
decide which alerts to act upon. In IPS systems some responsive activity is typically included when
the action activation parameters are fulfilled. Some IDSs can be configured to keep various logs for
forensic purposes, and some include extensive traffic analysis capabilities in addition to the more
typical intrusion detection functions. IDSs are not used to limit the functionality or connections in
the network in a way of firewalls. They are usually used only to alert users to attacks. IDSs with
prevention functionality do overlap with application layer firewalls, and can be seen as one.

The main sources apart from the writers experience used for this section are: “The Tao of Network
Security Monitoring” by Richard Bejtlich [32], and “Security Engineering”, 2nd edition, by Ross An-
derson [33].

6.1.1 Network Based Intrusion Detection Systems

Network based intrusion detection systems are used to monitor network traffic and alert on suspi-
cious activity that is not consistent with network policy. Typically one network node is tapped from
which the NIDS then gains its input. What network node should actually be tapped for the NIDS
depends on the network structure in use. However, IDS systems in general function best in envi-
ronments with limited amounts of noise. In very noisy environments the systems typically produce
large amounts of alerts including a number of false positives depending on the system in use.

Network policy is typically defined to the NIDS using either a scripting language or a set of signa-
tures known to be malignant. Both approaches are used in systems available today, and argu-
ments to favour either one exist.

Scalability issues that plague NIDS installations in high volume network environments is discussed
in the Section 6.1.3.

Review of security testing tools

Deliverable ID: D1_1

Page : 47 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

6.1.2 Host Based Intrusion Detection Systems

As the name implies, host based intrusion detection systems monitor the internal state of the host
system they reside in. They monitor the resource usage and behaviour of various system compo-
nents and software, and attempt to detect any malicious or suspicious activity by doing this. As
NIDS is monitoring the success of enforcing network usage policies, HIDS monitors the users or
systems adherence to the usage policies of the system. HIDS do not suffer from the same scalabil-
ity issues as NIDS due to the differences in their operating environment. However, they do incur
some overhead, the level of which depends on the strictness of the used detection methods and
the context.

Differentiating between HIDS and anti-virus systems is not a straight-forward task. The two can
include a lot of overlapping mechanisms and functionality.

6.1.3 Scalability

A single NIDS instance is classically used to monitor the network through a single network tap.
This places significant demands on the ability of the hardware to cope with increasing amounts of
traffic. Scalability of the systems is therefore an important priority, which some single-machine in-
stance systems lack. The problem has been approached using several approaches, including:

• Increasing computing power of single-instance systems using of-the-shelf components,

• Increasing computing power of single-instance systems using specialized hardware com-
ponents designed for the explicit purpose of high-bandwidth network monitoring.

• Building NIDS clusters to distribute the monitoring load over several back end machines
running instances of the NIDS and controlled by front end systems.

All the approaches have their challenges, and the approach recommended to any network is de-
pendent on the specific network in use and its context. With the networks with most high levels of
traffic the most likely solution able to cope with realistic costs is the cluster approach.

6.1.4 Challenges

NIDS and HIDS have very different operational environments, but their main goal remains the
same: To maximize the amount of true positives, preferably all, while minimizing the amount false
positives and especially false negatives. This need drives the work on these systems. The chal-
lenges to this are listed in the following subchapters.

6.1.4.1 NIDS

• High volume networks demand flexibility and scalability.

• High false positive rates can drown out the true positives. This is especially true in very
noisy environments.

• Evasion techniques are proliferating. Some techniques used in intentional attacks are
aimed to evade NIDS, leading to a race between hackers and NIDS developers.

Review of security testing tools

Deliverable ID: D1_1

Page : 48 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

• Low number of actual incidents can lead to problems with the human analysts monitoring
the NIDS. Experience is needed when operating them and weeding out the false positives.

• Network security policy must be well defined to the NIDS, typically using either scripts or
signatures.

• Deployment of IPv6 networks will cause new attacks to emerge, it will take a while until the
IPv6 detection capabilities are on par with the IPv4 capabilities.

6.1.4.2 HIDS

• Protection of the HIDS itself is critical. Typically attempts are made to subvert the HIDS as
soon as the attacker gains access to the host system.

• Protection of HIDS logs is important. Writing logs to a location where they cannot be modi-
fied by the system through one-way communication pathway is one option. After compro-
mising a system, any log files that could be used for forensics are likely to be targeted by
attackers.

• HIDS generate overhead must be low enough not to hinder operations of the host system.

• Security policy must be explicitly stated and defined in an accurate way to the HIDS, this is
a challenge in a dynamic and rapidly changing environment.

6.1.5 Examples of Current Intrusion Detection Systems

Few available IDS systems of different types are presented in this section. Presenting all available
tools in this category is not feasible, but attempt has been made to adequately present current
tools from different areas. More tools are also presented in section 7.2 dealing with intrusion pre-
vention systems (IPS).

6.1.5.1 Snort

Snort is one of the most commonly deployed NIDS/IPS. Snort is open source software with com-
mercial support and update through Sourcefire Inc. Snort is signature based and Sourcefire pro-
vides updates to the database containing them. The paying customers get the new signature up-
dates first, and the rest of the users a defined period of time later. Snort can also be deployed in
other modes besides IDS, those being sniffer and packet logger.

Name of the tool Snort

Tool title phrase Network Based Intrusion Detection System

Developed by Sourcefire, Inc. Originally created by Martin Roesch

Maturity Mature Open Source Software with GNU general public license.

Supported modelling
notations (if applicable)

Snort signature format. Uses signature data base to detect suspicious activity.

System requirements Depends on the volume of the monitored network. Runs on commodity hardware.

Available http://www.snort.org

Miscellaneous Widely used to monitor various types of network. Commercial support available
from Sourcefire, Inc.

Review of security testing tools

Deliverable ID: D1_1

Page : 49 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 32. SNORT IPS Console

6.1.5.2 BRO

Name of the tool Bro IDPS

Tool title phrase Network Based Intrusion Detection and Prevention System

Developed by Lawrence Berkeley National Laboratories, International Computer Science Insti-
tute, Originally created by Vern Paxson at LBL

Maturity Mature Open Source Software with BSD license.

Supported modelling
notations (if applicable)

Bro Scripting Language, domain specific scripting language for stating network
policy to the system.

System requirements Depends on the volume of the monitored network. Runs on commodity hardware

Available http://www.bro-ids.org

Miscellaneous Being used to monitor University of California, Berkeley high volume network us-
ing Bro cluster. No commercial support available.

Bro is an open-source, Unix-based Network Intrusion Detection System (NIDS) that passively mon-
itors network traffic and looks for suspicious activity. Bro detects intrusions by first parsing network
traffic to extract its application-level semantics and then executing event-oriented analyzers that
compare the activity with patterns deemed troublesome. Its analysis includes detection of specific
attacks (including those defined by signatures, but also those defined in terms of events) and unu-

Review of security testing tools

Deliverable ID: D1_1

Page : 50 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

sual activities (e.g., certain hosts connecting to certain services, or patterns of failed connection
attempts).

Bro uses a specialized policy language that allows a site to tailor Bro's operation, both as site poli-
cies evolve and as new attacks are discovered. If Bro detects something of interest, it can be in-
structed to either generate a log entry, alert the operator in real-time, execute an operating system
command (e.g., to terminate a connection or block a malicious host on-the-fly). In addition, Bro's
detailed log files can be particularly useful for forensics.

Bro targets high-speed (Gbps), high-volume intrusion detection. By judiciously leveraging packet-
filtering techniques, Bro is able to achieve the necessary performance while running on commer-
cially available PC hardware, and thus can serve as a cost-effective means of monitoring a site's
Internet connection.

6.1.5.3 Suricata NIDS

Suricata is a fairly recent NIDS that had a beta version release during 2009. It uses the same
ruleset for detection as Snort maintained by Sourcefire Inc. It also supports multithreading which is
not currently available in all of the systems. It is extensible but documentation on their web site is
limited.

How Suricata differs in use with Snort should be tested before commenting. The detection seems
to be fairly similar, since it is based on Snort signatures but with some additional plugins by the
Suricata team.

Name of the tool Suricata

Tool title phrase Network Based Intrusion Detection System

Developed by The Open Information Security Foundation

Maturity Stable release available, relatively new

Supported modelling
notations (if applicable)

Snort signature format. Uses signature data base to detect suspicious activity

System requirements Runs on commodity hardware

Available http://www.openinfosecfoundation.org/

Miscellaneous

6.1.5.4 StoneGate IPS

StoneGate IPS is a member of the proprietary StoneGate- family of products by Stonesoft, a com-
pany based in Finland. Information available concerning the internals of the system is restricted
due to its commercial nature. StoneGate is a NIDS, monitoring web traffic.

All the StoneGate products can be centrally managed using a management center provided by
Stonesoft. StoneGate IPS is avalaible as either software or dedicated appliance.

Name of the tool StoneGate IPS
Tool title phrase Network Based Intrusion Detection System

Developed by Stonesoft Oy

Maturity Mature and proprietary tool

Supported modelling -

Review of security testing tools

Deliverable ID: D1_1

Page : 51 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

notations (if applicable)

System requirements Intel- based platform with a limited number of actively certified platforms

Available http://www.stonesoft.com/en/products/ips/

Miscellaneous

6.1.5.5 Samhain HIDS

Samhain is an open source HIDS capable of centralized monitoring and management (client/server
configuration. It can also be used as a standalone installation. Its main tasks are focused on file
and host integrity monitoring. Samhain also includes stealth features, it can attempt to hide its ex-
istence through various ways, for example a hidden linux kernel module is available.

Samhain comes with a selection of different modules, from which the users can select what they
need. Information for creating additional modules is also provided in the documentation. Samhain
can also be compiled to include support for Prelude or Nagios integration. For more information on
Prelude visit: http://www.prelude-technologies.com/en/welcome/index.html and for Nagios:
http://www.nagios.org/

Name of the tool Samhain HIDS

Tool title phrase Host Based Intrusion Detection System

Developed by Samhain Labs

Maturity GNU General Public License

Supported modelling
notations (if applicable)

NA

System requirements Any POSIX compliant platform, commodity hardware.

Available http://www.la-samhna.de/samhain/

Miscellaneous Central monitoring and stealth attributes.

6.2 NETWORK MONITORING TOOLS

The term network monitoring describes the use of a system that constantly monitors a computer
network for slow or failing components and that notifies the network administrator (via email, pager
or other alarms) in case of outages. It is a subset of the functions involved in network manage-
ment. Monitoring also can refer to passive analysis of network traffic at either the packet or flow
level. SLAC maintains a comprehensive list of products at
http://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html.

In security testing, monitoring tools play a vital part. They can be used to understand the effects of
testing, starting from the low level of study of the packet payloads of different test cases and the
traffic test subjects generate as a result, to measuring the wide-scale effects of testing on, e.g.,
latency or availability of different nodes as a result of testing. Also, the system under test needs to
be monitored to observe the attack surface in the system. A network monitoring tool will comple-
ment scanning technologies by revealing client side implementations, as more and more attacks
target client implementations such as browsers and components that reach out to Internet for e.g.
network time synchronization and network name services. Secondly, network and system monitor-
ing tools are used during the test to analyze complex failures when security tests such as Fuzzing

Review of security testing tools

Deliverable ID: D1_1

Page : 52 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

is being performed. This is a critical capability for security testing in order to be able to fix the found
anomalous behaviour.

6.2.1 Wireshark

Name of the tool Wireshark

Tool title phrase Packet Analyzer

Developed by The Wireshark team

Maturity Stable release 1.6.0 – Free and open source

Supported modelling
notations (if applicable)

Not applicable

System requirements Unix-like operating systems including Linux, Mac OS X, BSD, and Solaris, and on
Microsoft Windows

Available http://www.wireshark.org/download.html

Miscellaneous GNU General Public License

Wireshark is a free and open-source packet analyzer. It is used for network troubleshooting, analy-
sis, software and communications protocol development, and education. It allows capturing and
interactively browsing the traffic running on a computer network. Originally named Ethereal, in May
2006 the project was renamed Wireshark due to trademark issues. In the domain of security test-
ing, Wireshark is widely used due to its support for a large number of network protocols, verifying
the contents and validity of different fields etc.

Figure 33. Wireshark

Review of security testing tools

Deliverable ID: D1_1

Page : 53 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

6.2.2 OpenNMS

Name of the tool OpenNMS

Tool title phrase OpenNMS enterprise grade network monitoring and management platform

Developed by Tarus Balog, OpenNMS Group

Maturity Active, stable

Supported modelling
notations (if applicable)

System requirements Cross-platform, written in Java

Available http://www.opennms.org/

Miscellaneous GPL license

OpenNMS is an example of a enterprise grade network monitoring and management system,
which can be used as a part of a security testing framework to measure wide-scale effects of test-
ing on the network.

It contains the following features, which are representative of the functionality done by products in
this area:

• Service polling - determining service availability and latency, including distributed meas-
urement of availability and latency, and reporting on the results

• Data collection - collecting, storing and reporting on data collected from nodes via protocols
including SNMP, JMX, HTTP, Windows Management Instrumentation, JDBC[1], and
NSClient

• Thresholding - evaluating polled latency data or collected performance data against config-
urable thresholds, creating events when these are exceeded or rearmed

• Event management - receiving events, both internal and external, including via SNMP traps

• Alarms and automations - reducing events according to a reduction key and scripting auto-
mated actions centered around alarms

• Notifications - sending notices regarding noteworthy events via e-mail, XMPP, or other
means

Review of security testing tools

Deliverable ID: D1_1

Page : 54 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 34. OpenNMS

6.2.3 OmniPeek

Name of the tool OmniPeek

Tool title phrase OmniPeek Network Analyzer

Developed by WildPackets

Maturity Commercial product

Supported modelling
notations (if applicable)

System requirements Windows XP or later, P4 2.4 GHZ, 4 GB RAM

Available http://www.wildpackets.com/products/

Miscellaneous

OmniPeek gives network engineers real-time visibility and Expert Analysis into every part of the
network from a single interface, including Ethernet, Gigabit, 10 Gigabit, 802.11a/b/g/n wireless,
VoIP, and Video to remote offices. Using OmniPeek’s intuitive user interface and "top-down" ap-
proach to visualizing network conditions, network engineers—even junior staff—can quickly ana-
lyze, drill down and fix performance bottlenecks across multiple network segments, maximizing
uptime and user satisfaction.

6.2.4 Clarified Analyzer

Review of security testing tools

Deliverable ID: D1_1

Page : 55 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Name of the tool Clarified Analyzer

Tool title phrase Clarified Analyzer is the tool of choice for collaborative analysis and visualization
of complex networks.

Developed by Clarified Networks Oy

Maturity Commercial product

Supported modelling
notations (if applicable)

System requirements Cross-platform

Available https://www.clarifiednetworks.com/Clarified%20Analyzer

Miscellaneous

Clarified Analyzer is a commercial network analysis tool that provides intuitive visualizations into
raw network data, and has a focus on analyses that support security testing. Typical Users of Clari-
fied Analyzer include testlab managers for distributed testlabs, cybercrime fighters, critical infra-
structure providers, network auditors, security & PCI compliance auditors and VOIP solution inte-
grators.

6.2.5 Tcpxtract

Name of the tool tcpxtract

Tool title phrase tcpxtract is a carver for network data

Developed by Nick Harbour

Maturity Open source, last version in 2005

Supported modelling
notations (if applicable)

System requirements UNIX

Available http://tcpxtract.sourceforge.net/

Miscellaneous

tcpxtract is a tool for extracting files from network traffic based on file signatures. Extracting files
based on file type headers and footers (sometimes called "carving") is an age old data recovery
technique. Tools like Foremost employ this technique to recover files from arbitrary data streams.
Tcpxtract uses this technique specifically for the application of intercepting files transmitted across
a network. Other tools that fill a similar need are driftnet and EtherPEG. driftnet and EtherPEG are

Review of security testing tools

Deliverable ID: D1_1

Page : 56 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

tools for monitoring and extracting graphic files on a network and is commonly used by network
administrators to police the internet activity of their users. The major limitations of driftnet and
EtherPEG is that they only support three filetypes with no easy way of adding more. The search
technique they use is also not scalable and does not search across packet boundries. tcpxtract
features the following:

• Supports 26 popular file formats out-of-the-box. New formats can be added by simply edit-
ing its config file.

• With a quick conversion, you can use your old Foremost config file with tcpxtract.

• Custom written search algorithm is fast and very scalable.

• Search algorithm searches across packet boundries for total coverage and forensic quality.

• Uses libpcap, a popular, portable and stable library for network data capture.

• Can be used against a live network or a tcpdump formatted capture file.

What makes tools, such as tcpxtract especially relevant for the project is that they make it possible
to automatically extract samples to be used for model-inference based fuzzers from live networks.

6.3 BUSINESS ACTIVITY MONITORING

Business Activity Monitoring (BAM) broke onto the scene three or four years ago, stimulated by the
growing interest in Business Process Management (BPM), which made it possible to understand
more clearly the relationship between real-time IT operations and business activities. Business
activity monitoring (BAM) [8] is Gartner's term defining how we can provide real-time access to
critical business performance indicators to improve the speed and effectiveness of business opera-
tions. Unlike traditional real-time monitoring, BAM draws its information from multiple application
systems and other internal and external (inter-enterprise) sources, enabling a broader and richer
view of business activities. As such, BAM will be a natural extension of the investments that enter-
prises are making in application integration.

6.3.1 IBM Business Monitor

Name of the tool IBM Business Monitor V7.5

Tool title phrase Cross-process, cross-system business activity monitoring (BAM) software

Developed by IBM

Maturity Commercial tool

Supported modelling
notations (if applicable)

WebSphere ILOG Rules

System requirements Operating systems AIX, HP, Linux, Mobile OS, Solaris, Windows, z/OS.

Available http://www-01.ibm.com/software/integration/business-monitor/

Miscellaneous

Review of security testing tools

Deliverable ID: D1_1

Page : 57 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 35. IBM Business Monitor configuration

IBM Business Monitor (formerly IBM WebSphere Business Monitor) provides end-to-end business
process and activity monitoring along with dashboards representing insight that can be used in
process optimization.

• Provides a high-performance business activity monitoring solution for processes and applica-
tions running in disparate environments which may or may not be implemented using any
BPM technology.

• Built-in tools and runtime support for integrated Business Activity Monitoring of IBM Business
Process Manager

• Fine-grained security to enable or prevent anyone to see a wide range of information depth
or detail

• Enhanced business user customization of data filtering and dashboard controls & reports.

• Enable views of KPIs, metrics, and alerts through Web interfaces, mobile devices, and cor-
porate portals.

6.3.2 Oracle Business Activity Monitoring

Name of the tool Oracle Business Activity Monitoring

Tool title phrase Monitoring business processes and services

Developed by Oracle

Maturity Commercial

Supported modelling
notations (if applicable)

System requirements Operating systems AIX, HP, Linux, Mobile OS, Solaris, Windows, z/OS.

Available http://www.oracle.com/technetwork/middleware/bam/downloads/index.html

Miscellaneous Oracle BAM is available for stand-alone or integrated installation in this integrated
installation for the Oracle SOA Suite. Directions to install Oracle BAM stand-
alone or Oracle BAM with the other components of the SOA Suite are available in
the SOA Suite Install Guide documentation.

Review of security testing tools

Deliverable ID: D1_1

Page : 58 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 36. Oracle BAM

Oracle Business Activity Monitoring (Oracle BAM) is a complete solution for building interactive,
real-time dashboards and proactive alerts for monitoring business processes and services. Oracle
BAM gives business executives and operation managers the information they need to make better
business decisions and take corrective action if the business environment changes.

6.4 DATABASE ACTIVITY MONITORING

Database activity monitoring (DAM) [9] is a database security technology for monitoring and ana-
lyzing database activity that operates independently of the database management system (DBMS)
and does not rely on any form of native (DBMS-resident) auditing or native logs such as trace or
transaction logs [10]. DAM is typically performed continuously and in real-time.

Database monitors and log monitors are relevant for Diamonds as they can be used to detect fail-
ures and anomalies in database access in order to detect zero-day attacks such as SQL injection.
Also load-based DDoS attacks can be observed with these tools.

6.4.1 IBM InfoSphere Guardium

Name of the tool IBM InforSphere Guardium

Tool title phrase Real-Time Database Activity Monitoring

Developed by IBM

Maturity Commercial tool

Supported modelling
notations (if applicable)

A user interface to design monitoring and security rules is provided within the tool

Review of security testing tools

Deliverable ID: D1_1

Page : 59 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

System requirements InfoSphere Guardium’s cross-platform solution supports all major DBMS plat-
forms and protocols running on all major operating systems (Windows, UNIX,
Linux, z/OS), as well as Microsoft SharePoint and FTP environments

Available http://www-01.ibm.com/software/data/guardium/database-activity-monitor/

Miscellaneous The IBM InfoSphere Guardium solution continuously monitors database transac-
tions through lightweight software probes installed on the database servers. The
probes monitor all database transactions, including those of privileged users, at
the operating system kernel level without relying on database audit logs.

IBM InfoSphere Guardium provides a simple and robust solution for assuring the privacy and integ-
rity of trusted information in many kinds of data centers (SAP, PeopleSoft, Cognos, Siebel, etc.)
and reducing costs by automating the entire compliance auditing process in heterogeneous envi-
ronments.

Figure 37. IBM InfoSphere Guardium user interface

It deploys centralized and standardized controls for real-time database security and monitoring,
fine-grained database auditing, automated compliance reporting, data-level access control, data-
base vulnerability management and auto-discovery of sensitive data. It allows to:

Review of security testing tools

Deliverable ID: D1_1

Page : 60 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

• Prevent Cyberattacks with Database Activity Monitoring: Proactively identify unauthorized
or suspicious activities by continuously tracking all database actions -- without impacting
performance or modifying databases.

• Monitor Privileged Users: Detect or block malicious or unapproved activity by DB adminis-
trators, developers and outsourced personnel without relying on native logs, triggers or oth-
er DBMS-resident mechanisms.

• Monitor Enterprise Application Users for Fraud: Identify end-user fraud with application-
layer monitoring for multi-tiered environments (SAP, PeopleSoft, Cognos, etc.).

• Audit and Validate Compliance: Simplify SOX, PCI-DSS, and Data Privacy processes with
pre-configured reports and automated oversight workflows (electronic sign-offs, escala-
tions, etc.).

• Enforce Database Change Control: Ensure data governance by preventing unauthorized
changes to critical database values or structures.

• Prevent Database Leaks: Detect and block leakage in the data center.

6.4.2 dbWatch

Name of the tool bdWatch

Tool title phrase Database monitoring tool for managing critical database environments

Developed by dbWatch Software

Maturity Commercial tool

Supported modelling
notations (if applicable)

No reference

System requirements Windows or Linux Server (VMWare virtual server supported), 1 GB RAM, 1 GB
HD Space

Available http://www.dbwatchsoftware.com/Download-Evaluation

Miscellaneous

Review of security testing tools

Deliverable ID: D1_1

Page : 61 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 38. dbWatch Architecture

dbWatch is a cross platform database monitoring tool for managing critical database environments.
Designed to be lightweight and easy to use, dbWatch does not sacrifice functionality or capabili-
ties. dbWatch’s architecture is designed to support very large database environments. dbWatch
supports IT departments with multiple database technologies because it works with across most
platforms. With dbWatch, users including professional database administrators (DBA), IT opera-
tions managers, and IT Security Officers can create their own monitoring procedures customized to
their organization’s needs, allowing to monitor their business processes, no matter how complex.
dbWatch is an interesting tool for monitoring any of the following:

• large database environments,

• heterogeneous database environments, and

• complex databases
In addition to broad and in-depth monitoring capabilities, dbWatch also has excellent reporting and
SQL administration tools.

6.4.3 DB Audit 4.2.29

Name of the tool DB Audit 4.2.29

Tool title phrase Database Auditing, Compliance & Security Solutions

Developed by Soft Tree Technologies

Maturity Commercial tool

Supported modelling
notations (if applicable)

No reference

System requirements Full compatibility with all host Operation Systems on which the supported data-
bases can run, including but not limited to Windows NT, UNIX, Linux, VMS,
OS/390, z/OS.

Available http://www.softtreetech.com/idbaudit.htm

Review of security testing tools

Deliverable ID: D1_1

Page : 62 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Miscellaneous

DB Audit Expert is a professional all-in-one database security and auditing solution for Oracle,
Sybase, DB2, MySQL and Microsoft SQL Server. DB Audit Expert enables database and system
administrators, security administrators, auditors and operators to track and analyze any database
activity including database security, access and usage, data creation, change or deletion. What
makes DB Audit really unique is its built-in support for multiple auditing methods giving you the
flexibility to choose the best fit for your database security requirements.

Figure 39. DB audit user interface

Key Benefits

• Improves system security and ensures system accountability. Captures both regular and
"back-door" access to audited database systems.

• Features centralized security and auditing control of multiple database systems from a sin-
gle location providing ease of management.

• Features unified auditing graphical interface that shortens the learning curve and is easy to
use.

• Provides analytical reports that reduce large amounts of audit data to comprehensive sum-
maries thus enabling to easily identify various database security violations.

Review of security testing tools

Deliverable ID: D1_1

Page : 63 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

• Provides analytical reports that help to identify which processes and users are hogging sys-
tem resources.

• Provides audit trail details that are unavailable from native database audit utilities.

• Provides ability to generate real-time email alerts to key personnel when changes occur to
sensitive data.

• Frees DBA from the need to create and manage finely-tuned database triggers for data-
change auditing purposes.

• Supports flexibility auditing configurations, enabling security personnel to choose specific
types of database operations and data changes that must be monitored and recorded in the
audit trail.

• Provides transparent system-level and data-change auditing of any existing applications
without requiring any changes to be made in those applications.

6.5 FIREWALLS, SPAM AND VIRUS DETECTION TOOL

Firewalls are often used to check information coming from the Internet or a network, and then either block

it or allow it to pass through to your private network. Spam and virus detection tools are also very used
to defend your private network against malicious software and attacks. These kinds of tools can be
interesting in the context of DIAMONDS project as they deal with contextual access control and
allows to detect several types of deny of service attacks.

6.5.1 Firewalls

A firewall is a device that guards the entrance to a private network and keeps out unauthorized or
unwanted traffic. The access permission is based upon a set of rules and is frequently used to pro-
tect networks from unauthorized access while permitting legitimate communications to pass. The
list of firewalls includes:

Tool Company URL

Comodo Internet
Security Plus

Comodo Group http://www.comodo.com/home/internet-security/security-software.php

Online Armor Pre-
mium

Tall Emu Pty Ltd http://www.online-armor.com/

Kaspersky Internet
Security

Kaspersky Lab http://www.kaspersky.com/

Outpost Firewall
Pro 7

Agnitum http://www.agnitum.com

Norton Internet
Security 2011

Symantec http://www.symantec.com

BitDefender Internet
Security

SoftWin http://www.bitdefender.com

ZoneAlarm Pro
Firewall

Check Point Software
Technologies LTD

http://www.checkpoint.com/

Trend Micro Internet
Security

Trend Micro Inc http://www.trend Micro Inc.com

eScan Internet
Security

MicroWorld Technologies
Inc.

http://www.escan.com

Review of security testing tools

Deliverable ID: D1_1

Page : 64 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

McAfee Internet
Security

McAfee, Inc. http://www.mcafee.com

Norman Personal
Firewall

Norman Personal Fire-
wall

http://www.norman.com

6.5.1.1 Comodo Internet Security Plus

Name of the tool Comodo Internet Security Plus

Tool title phrase Comodo can scan, filter, block and stealth ports, making it difficult for non author-
ised software or users to access the sensitive information.

Developed by Comodo Group

Maturity Commercial tool

Supported modelling
notations (if applicable)

System requirements Windows: XP, Vista, 7 Mac:

 Available http://www.comodo.com/home/internet-security/security-software.php

Miscellaneous Classified as the best personal firewall in 2011 by toptenreviews.com

Comodo Internet Security Complete 2011 (Figure 40) promises protection of end user Windows-
based PC against viruses and malware through Comodo's Auto Sandboxing and patent pending
Default Deny Protection technology. Protects against viruses, trojans, adware, spyware and other
malware threats, the program features a prevention-based technology that identifies safe, unsafe
and questionable files. Provides real-time. Virus-Free Guarantee offers repair of infected PC with
CISC installed that cannot be restored to working condition by Comodo tech support team.

Figure 40. Comodo Firewall

Review of security testing tools

Deliverable ID: D1_1

Page : 65 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

6.5.2 Virus detection

According to about.com, “An "antivirus" is protective software designed to defend your computer
against malicious software. Malicious software or "malware" includes: viruses, trojans, hijackers,
dialers, and other code that vandalizes or steals your computer contents. In order to be an effective
defense, your antivirus software needs to run in the background at all times, and should be kept
updated so it recognizes new versions of malicious software.” The list of antivirus software in-
cludes:

Tool Company URL

BitDefender SoftWin http://www.bitdefender.com

Webroot WebRoot http://www.webroot.com

Norton Symantec http://symantec.com/norton/antivirus

AVG AVG Technologies http://www.avg.com

Avira Avira GmbH http://www.avira.com

Trend Micro Trend Micro Inc http://www.trend Micro Inc.com

Avast AVAST Software a.s. http://www.avast.com

F-Secure F-Secure Corporation http://www3.f-secure.com

BullGuard BullGard https://www.bullgard.com

eScan MicroWorld Technologies
Inc.

http://www.escan.com

McAfee McAfee, Inc. http://www.mcafee.com

ZoneAlarm Check Point Software
Technologies LTD

http://www.checkpoint.com/

Panda Panda Security SL http://www.pandasecurity.com/

Kaspersky Kaspersky Lab http://www.kaspersky.com/

6.5.2.1 BitDefender Antivirus

Name of the tool BitDefender Antivirus Pro

Tool title phrase BitDefender is designed to protect computers from viruses and spyware.

Developed by SoftWin

Maturity Commercial tool

Supported modelling
notations (if applicable)

System requirements Windows: XP, Vista, 7 Mac: Mac OS X Tiger (10.4), Leopard (10.5) and Snow Leopard
(10.6) SymbianOS

 Available www.bitdefender.com

Miscellaneous It was launched in November 2001, and is currently in its thirteenth version. The
2011 version was launched in August 2010, and it includes several protection and
performance enhancements. It has been selected as the best 2011 Antivirus by
toptenreviews.com

BitDefender gives protection against viruses, spyware, hackers, spam and other e-threats without
harming the performance of the computer. Features: Firewall; iPhone-friendly Parental Controls,

Review of security testing tools

Deliverable ID: D1_1

Page : 66 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

for monitoring and controlling what websites your kids visit and who they IM with; QuickScan, to
detect viruses; IM Encryption; Video Tutorials; a customizable dashboard that lets you choose how
much or how little you want to see; system maintenance tools; File Encryption, for protecting sensi-
tive files; File Shredder (eliminates all traces of deleted files); Laptop Mode, to prolong battery life.

Review of security testing tools

Deliverable ID: D1_1

Page : 67 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 41. BitDefender Dashboard

This is the intermediate user profile view of BitDefender Antivirus Pro 2011. The dashboard (illus-
trated in Figure 41) can be customized to include the wanted tools. BitDefender Antivirus Pro fea-
tures real-time protection from viruses and other online threats as shown in the Figure 42.

Figure 42. Antivirus Configuration

Review of security testing tools

Deliverable ID: D1_1

Page : 68 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

6.5.2.2 Norton AntiVirus

Name of the tool Norton AntiVirus

Tool title phrase Provides malware prevention and removal during a subscription period.

Developed by Symantec

Maturity Commercial tool

Supported modelling
notations (if applicable)

System requirements Windows: XP, Vista, 7 Mac: Mac OS X

 Available http://symantec.com/norton/antivirus

Miscellaneous Norton AntiVirus 2011 does a great job of balancing system resources, simplicity, and
security. The protection level is second to none, and new features continue to set the
standard for antivirus software.

Norton AntiVirus 2011 detects and eliminates viruses, spyware, and other threats lying in wait to
infect your PC, so you can chat, email, and share files safely. It provides protection against hidden
threats lurking in downloads, emails, and instant messages without slowing down your PC's per-
formance.

Last year’s newest features were only available to customers using the most popular web brows-
ers, Norton now supports a large number of browsers (Chrome, Opera, Safari), email clients (Out-
look and Outlook Express) IM clients(Yahoo, AOL and MSN Messenger), download managers
(FileZilla) and even P2P sharing clients (Bittorrent, Limewire).

Figure 43. Norton AntiVirus Scan

Figure 43 shows the Norton AntiVirus scan in progress. As many other antivirus, it is possible to
run a manual quick scan, (longer) quick scan or a custom scan of designated files and folders.
Since some years, Norton introduced the Norton Insight Network (illustrated in Figure 44) which is
a dynamic database of information from Norton and community users on the relative threat and

Review of security testing tools

Deliverable ID: D1_1

Page : 69 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

reputation of files. This information can help you know the reputation of files before you download
them.

Figure 44. Norton Insight Network

6.5.2.3 Kaspersky AntiVirus

Name of the tool Kaspersky AntiVirus

Tool title phrase Kaspersky Anti-Virus is a comprehensive program, protecting users from a number of
threats.

Developed by Kaspersky Lab

Maturity Commercial tool

Supported modelling
notations (if applicable)

System requirements Windows: XP, Vista, 7 Mac: Mac OS X Linux
 Available http://symantec.com/norton/antivirus

Miscellaneous Kaspersky is often among the first to detect new viruses.

Kaspersky Anti-Virus 2011 (illustrated in the Figure 45) defends against both known and emerging
viruses, spyware and malware with streamlined technologies that won't slow down the computer.
Kaspersky Anti-Virus keeps the digital identity and passwords safe and secure when the computer
is with low charge.

Review of security testing tools

Deliverable ID: D1_1

Page : 70 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 45. Kaspersky Antivirus

6.5.2.4 ClamAV

Name of the tool ClamAV

Tool title phrase ClamAV is mainly installed on the server-side to check virus on emails or stored files.

Developed by SourceFire Inc.

Maturity Stable Version (0.97.1)

Supported modelling
notations (if applicable)

System requirements Windows, OS X, Linux

 Available http://www.clamav.net

Miscellaneous

ClamAV is an open source antivirus engine designed for detecting Trojans, viruses, malware and other mali-
cious threats. It is very used for storage servers and mail gateway scanning.

6.5.3 Spam Detection and Filtering

The Cambridge dictionary defines anti-spam as produced and used to prevent people sending and
receiving unwanted emails, especially advertisements. To prevent spamming, it uses different anti-
spam techniques. Some of these techniques are embedded in products, services and software to
ease the burden on users and administrators. Anti-spam techniques can be broken into four broad
categories: those that require actions by individuals, those that can be automated by e-mail admin-
istrators, those that can be automated by e-mail senders and those employed by researchers and
law enforcement officials. Among the different Anti-Spam software it can be listed:

Tool Company URL

SPAMfighter Pro SPAMfighter http://www.spamfighter.com/

Cloudmark Desktop Cloudmark Inc http://www.cloudmarkdesktop.com/

Review of security testing tools

Deliverable ID: D1_1

Page : 71 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

One Pro

MailWasher Pro FireTrust http://mailwasher.net

ChoiceMail One DigiPortal http://www.digiportal.com/

iHateSpam Sunbelt http://www.sunbeltsoftware.com/Home-Home-Office/iHateSpam/

CleanMail Home Byteplanet http://antispam.byteplant.com/products/cleanmail/

Spam Bully Axaware http://www.spambully.com/

SpamEater Pro High Mountain Software http://www.spameaterpro.com/

Spam Buster Contact Plus http://www.contactplus.com/Spam-Buster.html

6.5.3.1 SPAMfighter

Name of the tool SPAMfighter

Tool title phrase The users can create their own whitelists. However, they are dependent on the
spam filter software's community-based external blacklist.

Developed by SPAMfighter

Maturity Commercial tool

Supported modelling
notations (if applicable)

System requirements Windows: XP, Vista, 7

 Available http://www.spamfighter.com/

Miscellaneous

SPAMfighter Pro implements a community-based method of filtering spam. Over a million users
belong to the spam blocker's online community. These users power and feed the spam blocker's
online database. By accessing the spam filter software's integrated toolbar, users can report spam,
phishing attacks and other unwanted email in real-time. Once several people have reported the
same email sender or domain address as an unwanted sender, all future emails from the known
spammer are blocked. SPAMfighter configugurable settings (Illustrated in Figure 11) become ac-
tive as soon as the spam blocker loads into the operating system.

Review of security testing tools

Deliverable ID: D1_1

Page : 72 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 46. SPAMfighter Pro Screenshot

6.5.3.2 SpamAssassin

Name of the tool SpamAssassin

Tool title phrase This software can run on the server or the client side: It can be integrated with the
mail server to automatically filter all mail for a site. It can also be run by individual
users on their own mailbox and integrates with several mail programs.

Developed by Apache Foundation

Maturity Stable (version 3.3.1)

Supported modelling
notations (if applicable)

DNS-based blackhole lists and DNS-based whitelists, URI blacklists, Sender Poli-
cy Framework

System requirements Windows, Linux, OS X

 Available http://spamassassin.apache.org/

Miscellaneous It is also available as a Comprehensive Perl Archive Network module

SpamAssassin is released under the Apache License 2.0 used for e-mail spam filtering based on content-
matching rules. It uses a variety of spam-detection techniques, which includes DNS-based and checksum-
based spam detection, Bayesian filtering, external programs, blacklists and online databases.

This software is a Perl-based application which is usually used to filter all incoming mail for one or several
users. It can be run as a standalone application or as a subprogram of another application or as a client.

Review of security testing tools

Deliverable ID: D1_1

Page : 73 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

7. DIAGNOSIS AND ROOT-CAUSE-ANALYSIS TOOLS

7.1 DIAGNOSIS TOOLS FOR SECURITY TESTING

Root cause analysis (RCA) is a structured evaluation method that identifies the root causes for an
undesired outcome and the actions adequate to prevent recurrence. Root cause analysis helps
determine what happened, how it happened, and why it happened which is one of the objective of
DIAMONDS project in the context of a security failure detection. The practice of RCA is predicated
on the belief that problems are best solved by attempting to address, correct or eliminate root
causes, as opposed to merely addressing the immediately obvious symptoms. RCA is often con-
sidered to be an iterative process, and is frequently viewed as a tool of continuous improvement.

7.1.1 RCAT

Name of the tool RCAT
Tool title phrase Root Cause Analysis Tool

Developed by NASA

Maturity Commercial

Supported modelling
notations (if applicable)

No reference

System requirements Windows XP Operating System

Available https://pbma.nasa.gov/root-cause-analysis-tool/

Miscellaneous For information related to NASA's root cause analysis training and mishap inves-
tigation procedures you may also go to: https://secureworkgroups.grc.nasa.gov/mi

The NASA Root Cause Analysis Tool (RCAT) is designed to facilitate the analysis of anomalies,
close calls, and accidents and the identification of appropriate corrective actions to prevent recur-
rence. The RCAT software provides a quick, easy, accurate, and repeatable method to perform
and document root cause analysis, identify corrective actions, perform trending, and generate data
usable in precursor analysis and probabilistic risk assessment.

After extensive review, NASA found that none of the commercially available tools and methods
would support a comprehensive root cause analysis of all the unique problems and environments
NASA faces on the Earth, in the ocean, in the air, in space, and on moons and planetary bodies.
Existing tools were designed for a specific domain (e.g., aviation), a specific type of activity, a spe-
cific type of human error (e.g., errors of omission) or had a limited set of cause codes. The NASA
RCAT, a paper-based tool with companion software (now available free to government Agencies
and contractors), was designed to address the shortcomings identified in existing tools.

The NASA RCAT was designed with the whole system in mind, so that all potential types of activi-
ties and all potential causes of accidents, whether they be initiated by hardware, software, humans,
the environment, weather, natural phenomenon, or external events, could be incorporated into the
timeline, fault tree, and event and causal factor tree.

The RCAT aids users by providing a step-by-step guide, intuitive logic diagramming capability,
standard terminology, standard definitions and standard symbols.

The RCAT software provides the analyst with a quick and easy method to perform the following:

Review of security testing tools

Deliverable ID: D1_1

Page : 74 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

 1. Document case file properties,
 2. Identify and document the undesired outcome,
 3. Create and edit a detailed timeline,
 4. Create and edit a short timeline,
 5. Create and edit a fault tree,
 6. Create and edit an event and causal factor tree,
 7. Generate a report; and
 8. Trend case file properties, causes, contributing factors, and other information.

7.1.2 XFRACAS

Name of the tool XFRACAS

Tool title phrase Web-Based Failure Reporting Software

Developed by ReliaSoft

Maturity Commercial
Supported modelling
notations (if applicable)

No reference

System requirements Web-based software system (deployed via Internet Explorer) that can be imple-
mented with a SQL Server or ORACLE database

Available http://www.reliasoft.com/xfracas/

Miscellaneous

ReliaSoft’s XFRACAS software tool is a Web-based enterprise-wide incident reporting / failure re-
porting, data analysis and corrective action software system. The software has been designed for
the acquisition, management and analysis of product reliability, quality and safety data from multi-
ple locations, along with team-based problem solving and related activities.

Review of security testing tools

Deliverable ID: D1_1

Page : 75 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 47. XFRACAS user interface

The XFRACAS software allows to capture the data required for important reliability, quality, safety
and other analyses in order to resolve underlying problems and build a “knowledge base” of les-
sons learned that will be instrumental to future troubleshooting and development efforts. The
XFRACAS system is configurable and flexible. The system’s Web-based user interface allows for
easy access, collaboration and deployment throughout multiple sites, suppliers and dealers.

Some of the potential applications and benefits of performing FRACAS and related activities with
ReliaSoft's XFRACAS software include the ability to:

• Address data capture and management deficiencies to provide timely and accurate product
reliability, quality and safety data.

• Streamline incident reporting and problem resolution activities.

• Provide a closed-loop system for managing corrective actions.

• Contribute to design improvements, faster product release, better service and enhanced cus-
tomer satisfaction.

• Generate financial rewards through better product designs, enhanced control of product war-
ranties and more efficient customer support.

Review of security testing tools

Deliverable ID: D1_1

Page : 76 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

7.2 INTRUSION PREVENTION SYSTEMS

Intrusion prevention systems (IPS) are considered as extensions of intrusion detection systems
because they both monitor network traffic and/or system activities for malicious activity. The main
differences are, unlike intrusion detection systems, intrusion prevention systems are placed in-line
and are able to actively prevent/block intrusions that are detected. The list of IPS is too large and
includes:

Tool Company URL

Attack Mitigator Top Layer Networks http://www.toplayer.com/content/products/index.jsp

BBX DeepNines http://www.deepnines.com/bbx.php

Bro Vern Paxson http://bro-ids.org/

Cisco IPS Cisco Systems http://www.cisco.com/en/US/products/hw/vpndevc/index.html

Cyclops e-Cop.net http://www.e-cop.net/

DefensePro Radware, Ltd. http://www.radware.com/content/products/dp/default.asp

Dragon Enterasys Networks, Inc. http://www.enterasys.com/products/ids/

eTrust Intrusion
Detection

Computer Associates http://www3.ca.com/solutions/Product.aspx?ID=163

Juniper Networks
IDP

Juniper Networks https://www.juniper.net/products/intrusion/

IntruShield Network Associates http://www.mcafee.com/us/enterprise/products/network_intrusion_pre
vention/index.html

iPolicy iPolicy Networks http://www.ipolicynetworks.com/products/ipf.html

Proventia Internet Security Systems http://www.iss.net/products/product_sections/Intrusion_Prevention.ht
ml

SecureNet Intrusion http://www.intrusion.com/

Sentivist Check Point Software
Technologies

http://www.nfr.com/solutions/sentivist-ips.php

Snort Sourcefire http://www.snort.org/

Sourcefire Sourcefire http://www.sourcefire.com/products/is.html

StoneGate StoneSoft Corporation http://www.stonesoft.com/en/products_and_solutions/products/ips/

Strata Guard StillSecure http://www.stillsecure.com/strataguard/index.php

Symantec Network
Security

Symantec Corporation http://www.symantec.com/enterprise/products/index.jsp

UnityOne TippingPoint Technolo-
gies

http://www.tippingpoint.com/products_ips.html

7.2.1 Cisco intrusion prevention system

Name of the tool Cisco intrusion prevention system

Tool title phrase Network-based intrusion prevention system

Developed by Cisco

Maturity Commercial

Supported modelling
notations (if applicable)

Cisco Intrusion Prevention System Signatures

System requirements

Available http://www.cisco.com/en/US/products/sw/secursw/ps2113/index.html

Miscellaneous

Review of security testing tools

Deliverable ID: D1_1

Page : 77 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

This tool deploys network-based intrusion prevention system that identifies, classifies, and stops
known and unknown threats with the Cisco Intrusion Prevention System (IPS). As an essential part
of the Cisco Secure Borderless Network, Cisco IPS is one of the most widely deployed intrusion
prevention systems, providing protection against more than 30,000 known threats and timely sig-
nature updates and Cisco Global Correlation to dynamically recognize, evaluate, and stop emerg-
ing Internet threats.
Cisco IPS includes industry-leading research and the expertise of Cisco Security Intelligence Op-
erations Cisco Security Intelligence Operations. Cisco IPS protects against increasingly sophisti-
cated attacks, including: firected attacks, worms, botnets, malware, and application abuse.

Figure 48. Cisco IPS 4270 Sensor

Cisco IPS provides intrusion prevention that:

• Stops outbreaks at the network level, before they reach the desktop

• Prevents losses from disruptions, theft, or defacement

• Collaborates with other network components, for end-to-end, networkwide intrusion preven-
tion

• Supports a wide range of deployment options, with near-real-time updates for the most re-
cent threats

• Decreases legal liability, protects brand reputation, and safeguards intellectual property

8. TOOL INTEGRATION PLATFORMS

Tool integration is a challenge linked to the optimization and automation of development and test processes.

This area of research and development has acquired much attention in the couple of last years. It is now

seen as one way to further improve the efficiency of development and test processes in a more and more

complex world of system and software construction.

Looking at the tool integration problem, you have to look at the characteristics of the individual tools used

today. Typically, tools work on their own data structures, which are well-suited to the task which needs to be

performed with or by the tool. So the tool can only process data which is relevant for the tool. Tools can save

and load their internal data to a file which may have a proprietary format. In such cases it is very difficult to

make use of the tool specific data in a different context than the respective tools. So the question is how to

transfer the data between the tools. Tool integration is not limited to the question of data exchange. The var-

Review of security testing tools

Deliverable ID: D1_1

Page : 78 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

ious aspects of tool integration have been discussed in literature for long time and a couple of tool integration

solutions have been developed.

Basically, based on work of Thomas and Nejmeh [18] and Wassermann [19] the aspects of tool integration
can be summarized as follows:

• Data Integration: Data Integration is probably the most obvious aspect of tool integration. The inter-
esting point here is to share data between different tools. This is very crucial for software develop-
ment tasks, because certain data sets are needed at different locations throughout the complete
development process. If data cannot be shared between tools, they need to be replicated by manual
work. For example, if a requirements engineering tool stores requirements data in a proprietary for-
mat only, the requirements data can hardly be used in other tools, e.g. used for testing. Manual
work for having those requirements also in the testing tools may be needed. But it gets even worse,
if requirements changes over time as this imply major efforts in updating the data used in the sever-
al different tools in a consistent way.

• Control Integration: Control Integration is about the availability of certain functionalities provided by
a tool in the context of another tool. Control Integration may help in avoiding the implementation or
deployment of similar or same functionality in various different tools or locations. In most cases it is
sufficient to have a specific functionality (e.g. spell checker) available only once in a given environ-
ment instead of implementing a spell checker several times in all tools which needs this kind of
functionality. Control Integration is not easy to archive since tools might need a modular architecture
which reflects the service and consumer paradigm. So tools must provide their functionality via ded-
icated interfaces.

• Presentation Integration: The objective of presentation integration is to give a user a homogeneous
user experience, which means to provide a common look and feel. So tools do share the same UI
elements and there are in that way hard to separate. The benefit of presentation integration is the
reduction of the learning and training phase for new tools. So users know already how the UI of the
tool is working. One prominent example is the save menu, which is present in almost every tool
which comes with a graphical user interface. This menu entry is very often at the same place and
does have the same name or icon. There are a couple of frameworks and toolkits which contribute
to achieve presentation integration (e.g. Swing, or SWT).

• Process Integration: This aspect of tool integration is focussing on how tools may interact in order
to support a development process. So it is important to identify certain process steps and to figure
out which tools can be used for which part of the process and how they have to interact. This in-
cludes also the input and output required to complete certain steps. In particular events usually play
an important role for the process integration.

There are in general two different architectural approaches for integrating tools. This could be either done in
a tool coalition approaches or in a tool federation approach. Where tool coalition is based on point-to-point
connection between tools and tool federations are based on a central integration platform. Depending on the
context of the tool integration both approach have benefits and drawbacks. The major difference is that tool
coalitions can be used easier in small and ad-hoc environments, where tool federations better fit to larger
environments. Some tool federation platforms are presented in the next sections.

8.1 MODELBUS

Name of the tool Modelbus
Tool title phrase Model-driven tool integration framework
Developed by Fraunhofer FOKUS
License Open Source
Supported modelling EMF-based

Review of security testing tools

Deliverable ID: D1_1

Page : 79 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

frameworks
System requirements
Available www.modelbus.org

Miscellaneous

ModelBus is a model-driven tool integration framework which allows you to build a seamlessly integrated tool
environment for system engineering and test processes. It comprises a tool integration platform (run-time
environment) as well as the tool integration development environment.
ModelBus is based on SOA principles. It consists of a central bus-like communication infrastructure, a num-
ber of core services and a set of additional management tools. Depending on the usage scenario at hand,
different development tools can be connected to the bus via tool adapters. Once a tool has been successful-
ly plugged in, its functionality immediately becomes available to others as a service. Alternatively, it can
make use of services already present on the ModelBus.
The particular strength of ModelBus is the automation of individual development steps by using the orches-
tration facility. It helps to automatically trigger and execute sets of actions needed for running a development
process.

Figure 49 ModelBus Framework

The key point of ModelBus is the idea of freedom of data. So data either consumed or produced by tools are
in general available within the ModelBus context. Which means that is can be used for any relevant purpose
like traceabilty and impact analysis or report generation. This freedom of data is basicaly achieved by
creating open and complete models of the data that is used within a tool. In addtion, data access is
controlled by a role based access control system.

ModelBus comes with an Eclipse Integration (ModelBus TeamProvider) which is the easy way to benefit from
ModelBus infrastructure in all Eclipse-based tools. In addition to that, ModelBus offers a couple of tool
adapters for Commercial off-the-shelf (COTS) tools including Enterprise Architect, Doors or Simulink.

ModelBus is a very flexible solution which allows the customisation and adaptation of ModelBus-based
development environments. This is achieved by defining a clear but flexible architecture allowing the
integration and instantiation of various existing and well-established technological assets. The architecture
comprises a tool layer, a services layer and a repository layer and is supported by a work-flow engine.
ModelBus can handle data based on metamodelling principles, which allows the full employement of MDE
technologies. But ModelBus can also work on tradtional development artefacts such as source code ore
documents or binaries. ModelBus can work seamlessly on all different kinds of artefacts simoultaniously.

Review of security testing tools

Deliverable ID: D1_1

Page : 80 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 50 ModelBus architecture

ModelBus was initiated by European projects Modelware and Modelplex and it has a record of more the 6
years of development. ModelBus has been and is used in several different application scenarios including
Verification and Validation tasks. ModelBus is free software and can be used even in comercial
environments without license fees.

8.2 JAZZ

Name of the tool JAZZ
Tool title phrase IBM Rational Jazz technology platform
Developed by IBM
License Commercial
Supported modelling
frameworks

-

System requirements
Available www.ibm.com/software/rational/jazz/

Miscellaneous

Jazz is a tool integration approach of IBM. It basically allows the data integration and control integration. The
data ownership concept of Jazz is such, that every tool holds its own data. A centralised and externalised
data repository is not part of the architectural design. Only via specific interfaces, subsets of the tool data are
made public. Jazz has a particular approach to presentation integration as it allows the rendering of data
located in remote tools with the user interface of that tool. This works for specific subsets of data. The com-
munication of Jazz Integration Architecture is based on REST-full web services.

Review of security testing tools

Deliverable ID: D1_1

Page : 81 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 51 Example of JAZZ deployment

Jazz is a commercial product of IBM which is targeted on the area of tool integration. Jazz is based on the
Open Services of Lifecycle Collaboration (OSLC) initiative, which is a forum for specifying interfaces between
tools. OSLC divides the universe of tools into several categories (e.g. change management tools) and de-
fines for each category a set of interfaces and data schemas, which shall be implemented and used by the
respective tools in order to ensure interoperability among those tools. OSLC is following a different data inte-
gration approach than ModelBus. OSLC is assuming that each tool is responsible for managing its data and
only references to fractions of the tool internal data are given to other tools. This has some implications on
the availability of data. So the interfaces need either tool specific extensions or the standardized interface
definition needs to be extended in a subsequent version of the OSLC specification.
Jazz is a young technology and but some Jazz-based products are already made available by IBM, including
Rational Team Concert. The usage of Jazz in custom-made development environments is currently not easy
to achieve, there is only a limited number of tools which implement the OSLC specification to a sufficient
extend and OSLC is still subject to frequent evolution. Practical experience have been made in some exper-
iments showing that the OSLC specification leaves enough room for vendor specific extension which are
sometime hard to work with, when trying to integrate tools.

8.3 CONNECTED DATA OBJECTS – CDO

Name of the tool CDO
Tool title phrase Connected Data Objects
Developed by Eclipse Project
License Open Source
Supported modelling
frameworks

EMF-based

System requirements
Available http://www.eclipse.org/cdo/

Miscellaneous

CDO is an Eclipse project and hosted by the Eclipse Foundation. CDO is a data integration technology which
is based on a database principle either with object-relational or object-oriented mappings. CDO is a common
way to persist data which is based on the Eclipse Modeling Framework – EMF. It is based on classical client-
server architecture. CDO supports basically an online mode, which allows seeing changes done by a team
member immediately in the development environments of the other team members. Every update made by
clients is communicated to the server and then back to the other clients.

Review of security testing tools

Deliverable ID: D1_1

Page : 82 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 52 CDO architecture

CDO uses a specific protocol for communication between client and server, the net4j protocol which can be
based on TCP. CDO is targeted towards the Eclipse IDE and is well integrated into that. But CDO is as such
not a tool integration framework. CDO does not address the automation of development steps nor the inte-
gration of non-eclipse based tools and data. This needs to be achieved with the help of additional software.
CDO works well for newly created meta models (data schemas) but has problems when working with legacy
models and UML models. EMF models (and legacy models) need special preparation in order to be used in
a CDO environment. In addition working with CDO in an offline mode is difficult as CDO requires always a
connection to a server. These two issues make it sometimes difficult to use CDO in some development envi-
ronments. However, CDO is a powerful and efficient framework for storing EMF-based models in Eclipse-IDE
environments.

8.4 EMF STORE

Name of the tool EMF Store
Tool title phrase model repository for EMF
Developed by Eclipse Project
License Open Source
Supported modelling
frameworks

EMF-based

System requirements
Available http://www.eclipse.org/emf-store/
Miscellaneous

EMF Store became recently an Eclipse project hosted at the Eclipse Foundation. It is another model reposi-
tory for EMF-models in parallel to the CDO one. EMF store follows a very similar approach to ModelBus as it
supports both the online and the offline model for collaboration.
EMFStore emphasises the merge process in Eclipse IDE based environments. Furthermore, it claims to
have special support for migration of models. This means that it in particular support the evolution of meta-
models. Similar to CDO in EMFStore the meta models needs special preparation before it can be used with
EMF-store.

Review of security testing tools

Deliverable ID: D1_1

Page : 83 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 53 Example of EMFstore deployment

EMFStore is a model repository which can be used in a tool integration environment. It is concentrating on
the data integration aspect. In particular, it provides its own Eclipse-based editors for merging data coming
from different developers. EMFStore is not concerned with the other aspects of tool integration in particular
the control and process integration aspects.

9. RISK ANALYSIS AND MODELING TOOLS

In this section, we give a short overview of risk analysis and modeling tools for IT security. These

risk analysis and modeling tools differ in scope of support, underlying methodologies and modeling

techniques and compliance to IT standards. All of the discovered tools support general risk analy-

sis and management phases with the capabilities for manual risk identification, risk analysis, eval-

uation, classification of risks as well as generating various reports. The difference is the used

methodologies and modeling techniques.

Checklists based tools use guided question catalogues, questionnaires or best practice docu-

ments. ISO 17799 Risk Analysis Toolkit [34] is an open source toolkit for risk analysis of security in

enterprises or public organization based on a guided question catalogue, which has the possibility

to generate security policies predicated on the given answers. The free available version has as

application language Spanish. Several tools [ISO 27000 Toolkit [35], ISO27k Toolkit [36], MOF

[37]] provide series of general IT security materials (e.g. process description, checklists, question-

Review of security testing tools

Deliverable ID: D1_1

Page : 84 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

naires, typically used tables, and more) and best practice documents. All these important elements

are provided in electronic form for reuse proposes. Special security aspects such as e-Security are

also supported by document based toolkits. For example, the e-Security Toolkit [38] is a valuable

collection of items and documents to assist in ensuring that your e-security and e-commerce secu-

rity is sound. It comprises a LAN/Network audit questionnaires, a firewall audit questionnaire, an e-

security checklist, and security questionnaires covering virus management, network routers, data

access, contingency, system access, dial-in, internet access and more.

Engineering based tools often use a top-down Information Security Management System (ISMS)

approach for risk identification, analysis and management. Most of these tools offer knowledge

databases for vulnerabilities and controls. Threat Analysis & Modeling tool (TAM) [Microsoft Threat

Analysis & Modeling [39], SDL Threat Modeling Tool [40]] focused on finding threats against an

already designed application by using libraries (design rules, attacks, safeguards, or countermeas-

ures). The developer starts to model an overview of the system architecture in the tool and will be

supported by suggestions and various reports. The knowledge database of the RiskWatch [41]

tool are completely customizable by the user, including the ability to create new asset categories,

threat categories, vulnerability categories, safeguards, question categories, and question sets.

Based on these knowledge databases it conducts automated risk analysis and vulnerability as-

sessments of information systems. For distributed risk management it is possible to use the real-

ISMS [42] tool and Citrus ONE [43] to identify and manage IT Security risks. These tools are web-

based and use server based databases to answers several ISO 27001 criteria automatically.

Other common methodology like CRAMM (CCTA Risk Analysis and Management Method) focuses

also on non technical security aspects during the risk identification, analysis and management.

Therefore, the database of the CRAMM tool covers all aspects of information security including

technical, physical, personnel, documentation and procedural measures.

Another aspect is the compliance to one or more IT standards, like ISO/IEC 17799 [12] (CORAS,

CRAMM, Callio SECURA [44], Proteus [45], RiskWatch), ISO/IEC 27000 series [13] (CRAMM,

Callio SECURA, Proteus, RiskWatch), NIST SP 800 series [14] (CounterMeasures [46], Risk-

Watch), IT-Grundschutz [15] (GSTool [47]).

Another main approach is the evaluation towards a model-based risk assessment, to allow the

combination of complementary risk assessment methods and the integration into the model-based

development. This methodology is supported by the CORAS tool. This tool is a good starting point

for the model-based risk assessment, but it does not cover the gap between system design model

and the risk model.

Several scientific approaches have been published in order to close the gap between risk models,

systems design and implementation models. Chivers [16] introduce in his thesis the Security Ana-

lyst Workbench (SAW) for the model-based Security Design Analysis Framework (SeDAn), which

can reference the system design to its security environment. The basic function of the tool is threat

path analysis based on the imported system design model in UML. SAW is able to determine paths

of attacks between various types of attacker and assets of concern.

Eichler [17] propose another approach based on a textual domain specific modeling language,

Eclipse Modeling Framework (EMF) [48] and Xtext [49]. Through the modular design of the EMF

meta-model, this tool can be integrated well in existing tool chains.

Next to the risk analysis tools for IT Security exist several risk related tools that are not dedicated

for IT Security. Some of these tools can be adapted towards IT Security, like MQ1 Risk Manage-

Review of security testing tools

Deliverable ID: D1_1

Page : 85 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

ment system [50] or Enterprise Risk Manager [51].

One of the main lack is, that many of these tools are separated from the system itself and more or

less filled by informal description methods. This means within these tools the running system is

never explicitly modeled, referenced or data from the system is used. Therefore a gap exists be-

tween the system design model itself and the model within the risk analysis tool. Only the SeDAn

Framewok support references between these models.

In the next sections we describe three tools in more detail.

9.1 MICROSOFT THREAT MODELING

Name of the tool SDL Threat Modeling Tool

Tool title phrase Threat Modeling for the Microsoft Security Development Lifecycle

Developed by Microsoft

Maturity Free

Supported modelling
notations (if applicable)

STRIDE

System requirements Windows Vista or higher, Visio 2007

Available http://go.microsoft.com/?linkid=9706808

Miscellaneous

Figure 54. Screenshot of SDL Threat Modeling Tool [52]

The SDL Threat Modeling tool is one of the Security Development Lifecycle (SDL) tool chain pro-
vided by Microsoft to community. The tool is used in the design phase of the SDL and support
software architects to identify and mitigate security risk issues.

One of the main differences is that the approach is centered on the software and not on assets or
attackers. Therefore, the first step in the underlying process is to model an overview of your appli-
cation architecture using data flow diagrams (see Figure 54) and pointing out the trust boundaries
in the application landscape. After this step it offers a guided analysis of threats by providing tips to
identify threats and by automatic generation of elements for the STRIDE method.

Review of security testing tools

Deliverable ID: D1_1

Page : 86 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Using the STRIDE method one can define threats for every component and possible counter-
measures. The reporting capabilities for various reports (security activities, testing reports, etc.)
can be used for further communication.

Microsoft has tried to create a threat modeling tool that can be used by system designers, without
being security experts.

9.2 THE CORAS TOOL

Name of the tool The CORAS tool

Tool title phrase

Developed by SINTEF

Maturity Open source

Supported modelling
notations (if applicable)

CORAS risk analysis language

System requirements OS Independent, Java

Available http://sourceforge.net/projects/coras/

Miscellaneous

Review of security testing tools

Deliverable ID: D1_1

Page : 87 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 55. Screenshot of the CORAS tool

The CORAS tool is an open source diagram editor that supports the CORAS risk analysis lan-
guage. The CORAS language is a graphical language whose constructs correspond to notions that
are relevant during a risk analysis, e.g. threats, vulnerabilities, risks, unwanted incidents, threat
scenarios and assets. The CORAS tool is intended to be used intensively during workshops where
information is gathered through structured brainstorming. The tool is also intended to be used to
document a risk analysis and to present the risk analysis results.

The CORAS tool is designed to support on-the-fly modelling using all five kinds of basic CORAS
diagrams, thus facilitating the entire CORAS risk analysis process. A screenshot of the CORAS
diagram editor is given in Figure 55. As indicated in the figure, the editor has six main parts:

• A pull-down menu that offers standard functions such as open, save, copy, cut, paste, undo
and print.

• A tool-bar that offers easy access to the standard functions of the pull-down menu.

• A palette that contains the model elements and relations for drawing the diagrams.

• A drawing area or canvas for drawing the diagrams.

Review of security testing tools

Deliverable ID: D1_1

Page : 88 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

• A properties window that lists the properties of a selected element, and that can be used to
edit the values of the properties.

• An outline that presents a project and its diagrams as a tree.

Except for the pull-down menu and the tool bar, all parts of the tool can be closed or hidden.

In the tool, a project is a collection of diagrams, and each diagram must belong to a project. A pro-
ject must therefore be created before any diagrams are created.

The outline contains a tree representation of the project. The diagrams of the project are listed at
the first level, and under each diagram all the diagram elements are listed. When a new element is
created in the drawing area, it is automatically added to the tree under the correct diagram.

The drawing area is the part of the tool where the diagrams are made by inserting, editing, annotat-
ing and deleting elements. This is also where likelihoods and consequences are inserted to dia-
grams as part of the risk estimation, and it is also where risk levels are inserted as part of the risk
evaluation.

9.3 CRAMM - CCTA RISK ANALYSIS AND MANAGEMENT METHOD AND TOOL

Name of the tool CRAMM 5

Tool title phrase Information Security Toolkit

Developed by Siemens

Maturity commercial

Supported modelling
notations (if applicable)

CRAMM

System requirements •Windows NT, 2000, XP

Available http://www.cramm.com

Miscellaneous

The First version of CRAMM (CCTA Risk Analysis and Management Method) was developed in

1985 by tasked the Central Computer and Telecommunications Agency on request of the UK Gov-

ernment. The resulted CRAMM methodology is divided into three stages:

• Asset identification and valuation

• Threat and vulnerability assessment

• Countermeasure selection and recommendation.

Review of security testing tools

Deliverable ID: D1_1

Page : 89 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 56, Screenshot of CRAMM [53]

CRAMM's risk assessment tools can be used to answer single questions, to look at organizations,
processes, applications and systems or to investigate complete infrastructures or organizations.
Users have the option of a rapid risk assessment tool or a full, more rigorous, analysis. The follow-
ing risk aspects of different risk can be answered:

• Determining if there is a requirement for specific controls, eg. strong authentication, encryp-
tion, power protection or hardware redundancy

• Identify the security functionality required for a new application

• Developing the security requirements for an outsourcing or managed service agreement

• Review the requirements for physical and environmental security at a new site

• Examine the implications of allowing users to connect to the Internet

• Demonstrate compliance with legislation such as the Data Protection Act

• Develop a security policy for a new system

• Audit the suitability and status of security controls on an existing system

The CRAMM tool provides a comfortable way to apply the CRAMM methodology, currently devel-
oped by Siemens. All three stages of the method are supported using a staged and disciplined
approach embracing both technical (eg. IT hardware and software) and non-technical (e.g. physi-
cal and human) aspects of security. The tool comes in different versions: CRAMM expert, CRAMM
express, BS 7799 Review, CRAMM NATO.

Review of security testing tools

Deliverable ID: D1_1

Page : 90 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

9.4 MOTORBAC

Name MotOrbac

Models supported Or-BAC

System require-
ments

Java runtime environment

Developed by Institut TELECOM (France)

Available http://sourceforge.net/projects/motorbac/

Miscellaneous GNU General Public License (GPL), Mozilla Public Li-
cense 1.1 (MPL 1.1)

Or-BAC [54] stands for Organization Based Access Control language. It is an access and usage
control model based on first logic order that allows an organization to express its security policy
including contextual rules. For this purpose, Or-BAC defines two abstraction layers. The first one is
called abstract layer and describes a rule as a role having the permission, prohibition or obligation
to perform an activity on a view in a given context. A view is a set of objects to which the same
security rules apply. A role is set of users with similar privileges and an activity considers a set of
actions with similar properties. The second layer is the concrete one. It is derived from the abstract
level and grants permission, prohibition or obligation to a user to perform an action on an object.
Thus, according to the Or-BAC syntax, a typical security rule has the following form:

• Obligation (S, R, A, V, C): this rule means that within the system S, the role R is obliged to
perform the activity A targeting the objects of view V in the context C.

• Permission (S, R, A, V, C): this rule means that within the system S, the role R is permitted
to perform the activity A targeting the objects of view V in the context C.

• Prohibition (S, R, A, V, C): this rule means that within the system S, the role R is prohibited
to perform the activity A targeting the objects of view V in the context C.

In Or-BAC, we use contexts to express different types of extra conditions or constraints that control
activation of rules expressed in the access control policy:

• The temporal context that depends on the time at which the subject is requesting for an ac-
cess to the system.

• The spatial context that depends on the subject location.

• The user-declared context that depends on the subject objective (or purpose).

• The prerequisite context that depends on characteristics that join the subject, the action and
the object.

• The provisional context that depends on previous actions the subject has performed in the
system.

Review of security testing tools

Deliverable ID: D1_1

Page : 91 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 57. The Or-BAC model

The Or-BAC model has an associated tool called MotOrBAC [55] that was developed to help to
design and implement security policies using the Or-BAC model. The current versions of this tool
can design, upload and store security policies and simulate them. The policy simulation can be
used to verify the consistency of a security policy. The tool can also detect potential conflicts and
help the designer eliminate them.
MotOrBAC exists in two versions. The first version is completely free and is distributed under GPL
license. The second version, newer and more functional and actively developed, is partially open
source and is distributed under Mozilla license. Unlike the first version, MotOrBAC V2 is imple-
mented entirely in Java. It uses an API that has been specially developed to incorporate features of
the implementation of the Or-BAC model in existing or under development applications. This API,
the Or-BAC API, is not open source but can be requested on the official Web site of Or-BAC [56].

Review of security testing tools

Deliverable ID: D1_1

Page : 92 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 58. MotOrBAC user interface

9.5 GOAT

Name GOAT

Models supported VCG (Vulnerability Cause Graphs), SAG (Security Activity
Graphs), VDC (Vulnerability Detection Conditions), SGIT
(Security Goal Indicator Trees), VID (Vulnerability Inspec-
tion Diagram), TSM (TestGen Security Models) and many
others

System require-
ments

Java runtime environment, MySQL

Developed by Linköpings Universitet, Sweden

Available http://www.ida.liu.se/divisions/adit/security/goat/

Miscellaneous Free Software released as GPLv3

The GOAT modeling tool is one of the results of the SHIELDS EU Project. It supports editing a
variety of SHIELDS models, and connects to the SHIELDS SVRS for model upload and download.
GOAT is a platform-independent Java program. It has been developed mostly on Windows but
should work on other platforms as well. GOAT is distributed as an executable JAR file. In the fol-
lowing subsections, we will present VDC and TSM plugins in GOAT.

Review of security testing tools

Deliverable ID: D1_1

Page : 93 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 59. GOAT user interface

9.5.1 VDC editor plugin for GOAT

The VDC editor is a GOAT plug-in, which offers security experts the possibility to create vulnerabil-
ity detection conditions (VDCs). These VDCs will be used to detect the presence of vulnerabilities
by checking software execution traces using Montimage TIC testing tool2.
The VDC editor user interface includes some features that allow simplifying the construction and
composition of VDCs. The VDC editor has the following functionalities:

- The creation of new VDCs corresponding to vulnerability causes from scratch and their
storage in an XML format.

- The visualisation of already conceived VDCs

- The editing (modification) of existing VDCs in order to create new ones.

The VDCs are stored in an XML file that constitutes one of the inputs for the Montimage TIC tool.
This tool aims at detecting potential vulnerabilities in the execution traces of a code during runtime.
A vulnerability is discovered if a VDC signature is detected on the execution trace.
To better understand the design of the VDC editor, we provide the syntax of a VDC. A VDC is a
formalism used to determine the presence of vulnerabilities in a piece of software. It basically indi-
cates that the execution of an action under certain conditions could be dangerous or risky for the
program.

2
 TIC testing tool is one of Montimage tools. It is a dynamic code analysis tool that aims at detecting vulnerabilities by

analysing the traces of the code while it is executing.

Review of security testing tools

Deliverable ID: D1_1

Page : 94 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

A VDC has a formal expression given by:
VDC ::= a/P(Var,Act) | a[/P(Var,Act)]; P′(Var,Act)

Where a denotes an action, P(Var,Act) and P′(Var,Act) represents any predicate on variables Var
and actions Act.

- A vulnerability detection condition a/P(Var,Act) means that action “a” occurs when specific
conditions denoted by predicate P(Var,Act) hold.

- A vulnerability detection condition a[/P(Var,Act)];P′(Var,Act)) means that action “a” used
under the optional conditions P(Var,Act) is followed by a statement whose execution satis-
fies P′(Var;Act). Naturally, if action a is not followed by an action, the predicate P′(Var,Act)
is assumed to be true.

Thus, we can say that a VDC is composed of at most 3 parts:

1. Master condition: The triggering condition called also master action (denoted a). When ana-
lysing the execution trace, if this condition is detected, we should verify if the state and post
conditions of the VDC hold as well. If this is the case, then a vulnerability has been detect-
ed. The master condition is mandatory in a VDC.

2. State condition: A set of conditions related to the system state (denoted P(Var,Act)). The
state condition describes the states of the specified variables at the occurrence of the mas-
ter action. The state condition is mandatory in a VDC.

3. Post condition: A set of conditions related to the system future state (denoted P′(Var,Act)).
If a master action is detected in the state condition context, then we should verify if the post
condition holds in the execution that follows. If this is the case, a vulnerability has been de-
tected. This post condition is not mandatory in a VDC.

Figure 60. Vulnerability detection condition for “Use of tainted value to malloc” in GOAT

9.5.2 TSM editor plugin for GOAT

The TEG Security Model (TSM) editor is a GOAT plug-in that offers security experts the possibility
to create TEG3 security models that will be used to detect the presence of vulnerabilities in com-
municating systems by stimulating them with a set of automatically generated TSM-based test
cases.
The TSM editor has the following functionalities:

- The creation of new TSM corresponding to vulnerability causes.

3
 TEG is one of Montimage testing tools. It allows to automatically generate and execute security test cases on Web-

based applications.

Review of security testing tools

Deliverable ID: D1_1

Page : 95 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

- The visualisation of already created TSMs.

- The editing (modification) of existing TSMs in order to create new ones.

The TSMs are stored in an XML file that constitutes one of the inputs for the Montimage TEG tool.
This tool aims at automatically generating test scenarios from a formal description of the system
under test. This generation is made according to specific TSM-driven objectives called test pur-
poses (e.g. a test objective can be for instance to check that the studied system can resist against
denial of service or brute force attacks).
To better understand the design of the TSM editor, we provide the syntax of a TSM. TSMs permits
to formally express security rules a system has to respect in order to prevent known security vul-
nerabilities. Each security rule describes a property that regulates the nature and the context of
actions that can be performed within the studied system. A TSM provides a way to describe per-
missions, prohibitions and obligations related to the system actions within different contexts and
potentially with time constraints.
A TSM model is composed of 3 parts:

- The Rule: It can be a permission (P), prohibition (F for forbidden) or obligation (O) rule.

- Rule context: It represents a set of conditions (on the system variables values and per-
formed actions) that needs to be verified by the system under test in order to apply the rule.

- The property to verify: It represents a set of conditions (also on the system variables values
and performed actions) that the system has to satisfy if the rule context holds.

In an obligation (respectively prohibition) security rule, if the rule context holds, then the property to
verify MUST be true (respectively false).
Within the TSM model, a condition expresses a predicate related to the system status including the
actions being performed, variables values and time constraints. It has two abstraction levels:

- On the abstract level, this condition is expressed in natural language and allows under-
standing the meaning of the conditions without any formal link with the studied system.

- In the instantiated level, this condition is linked to the real system. In our case, in order to
automatically generate test cases, TEG tool relies on the functional model of the system
under test specified as a finite state machine extended with variables and time. Thus, a
condition within a TSM can be related to the system data (variables), system input or out-
put messages, system state, system tasks or transitions. It can also be the logical combi-
nation of these simple conditions using classical logical operators (AND, OR and NOT) or
chronological operators (like FOLLOWED BY). The instantiation of an abstract TSM allows
generating test cases in order to verify if the security rule is respected or not.

Review of security testing tools

Deliverable ID: D1_1

Page : 96 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 61. Graphical representation of IP blocking security rule

9.6 SEAMONSTER

Name SeaMonster

Models supported VCG, SAG, Attack tree, Misuse case

System require-
ments

Java runtime environment 1.5 or higher

Developed by SINTEF ICT (SINTEF)

Available http://sourceforge.net/projects/seamonster

Miscellaneous Open source, released under the LGPL license.

SeaMonster is a graphical security modelling tool based on a set of Eclipse frameworks. SeaMon-
ster is continuously being developed by an open source community lead by SINTEF. The unique
features of SeaMonster are that it supports notations and modelling techniques that security ex-
perts and analysers are already familiar with, and adds the functionality of linking them together
based on a common information model. Modelling and linking different security aspects, such as
causes, threats and countermeasures within the same tool, enables developers to use SeaMonster
as a common platform for security modelling.

Review of security testing tools

Deliverable ID: D1_1

Page : 97 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 62, SeaMonster screen capture

10. REFERENCES

[1] H. Götz, M. Nickolaus, T. Roßner, K. Salomon, “Model Based Testing - Modelling and gen-
eration of tests - basics, criteria for tool use, tools in the overview” (in German), iX Studie,
01/2009

[2] Jürjens, J.: Secure Systems Development with UML, Springer, 2005

[3] Jürjens, J.; Schreck, J. & Yu, Y.: Automated Analysis of Permission-Based Security Using
UMLsec; Fundamental Approaches to Software Engineering, 11th International Conference
(FASE), Springer, 2008, 4961, 292-295

[4] Jürjens, J. Jézéquel, J.-M.; Hussmann, H. & Cook, S. (Eds.) UMLsec: Extending UML for
Secure Systems Development; The Unified Modeling Language, Springer Berlin / Heidel-
berg, 2002, 2460, 1-9

Review of security testing tools

Deliverable ID: D1_1

Page : 98 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

[5] Montrieux, L.; Jürjens, J.; Haley, C. B.; Yu, Y.; Schobbens, P.-Y. & Toussaint, H.: Tool sup-
port for code generation from a UMLsec property; 25th IEEE/ACM International Conference
on Automated Software Engineering (ASE), ACM, 2010, 357-358

[6] Lodderstedt, T.; Basin, D. A. & Doser, J. Jézéquel, J.-M.; Hußmann, H. & Cook, S. (Eds.) Se-
cureUML: A UML-Based Modeling Language for Model-Driven Security; The Unified Modeling Lan-
guage, 5th International Conference, Springer, 2002, 2460, 426-441

[7] Kaksonen, Rauli. A Functional Method for Assessing Protocol Implementation Security (Li-
centiate thesis). 2001. Espoo. Technical Research Centre of Finland, VTT Publications 447.
128 p. + app. 15 p

[8] David W. McCoy. “Business Activity Monitoring: Calm Before the Storm”. Gartner publica-
tion on April 2002. http://www.gartner.com/resources/105500/105562/105562.pdf

[9] Aaron Newman. “Database Activity Monitoring: Intrusion Detection & Security Auditing”. By
Application Security Inc. CTO & Founder.
http://www.appsecinc.com/presentations/DAM_wp82305.pdf 2011.

[10] Jon Oltsik. “Market Research Study: database security and compliance risks”. December
2009. http://www.appsecinc.com/media/ESG-2010/ESG-Research-Summary-AppSecInc-
Database-Security-December-2009.pdf

[11] Object Management Group (OMG). UML 2.0 Testing Profile, Final Adopted Specification.
Version 1.0, July 2005. Available at: http://www.omg.org/spec/UTP/1.0

[12] ISO/IEC. Information technology - security techniques - code of practice for information se-
curity management, 2nd edition. SS-ISO/IEC 17799, 2005.

[13] ISO/IEC. Information technology - security techniques - Information security management
systems - overview and vocabulary, First Edition. ISO/IEC 27000:2009, 2009

[14] NIST. Risk management guide for information technology systems. NIST Special Publica-
tion 800-30, 2002

[15] BSI. BSI-Standard 100-3: Risk Analysis based on IT-Grundschutz, Version 2.5, 2008

[16] Howard Robert Chivers, Doctor Thesis: Security Design Analysis, University of York, 2006

[17] Jörn Eichler: Lightweight modeling and analysis of security concepts. In Proceedings of the
Third international conference on Engineering secure software and systems (ESSoS'11)
Springer-Verlag, Berlin, 2011, p 128-141.

[18] Thomas, I.; Nejmeh, B: Definitions of tool integration for environments, Software IEEE,
1992

[19] Wassermann, A.: Tool integration in software engineering environments, Software Engi-
neering Environment, Lecture Notes in Computer Science, 1990

[20] ETSI ES 202 951 v 1.1.1: “Methods for Testing & Specification (MTS); Model-Based Test-
ing (MBT); Requirements for Modelling Notations”

[21] IETF RFC 4301: "Security Architecture for the Internet Protocol".

[22] IETF RFC 4302: "IP Authentication Header".

[23] ETF RFC 4303: "IP Encapsulating Security Payload (ESP)".

[24] IETF RFC 4306: "Internet Key Exchange (IKEv2) Protocol".

[25] ETSI TS 102 558: "Methods for Testing and Specification (MTS); Internet Protocol Testing

Review of security testing tools

Deliverable ID: D1_1

Page : 99 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

(IPT): IPv6 Security; Requirements Catalogue".

[26] ETSI TS 102 593: "Methods for Testing and Specification (MTS); Internet Protocol Testing
(IPT); IPv6 Security; Conformance Test Suite Structure and Test Purposes (TSS&TP)".

[27] ETSI TS 102 594: "Methods for Testing and Specification (MTS); Internet Protocol Testing
(IPT); IPv6 Security; Conformance Abstract Test Suite (ATS) and partial Protocol Imple-
mentation eXtra Information for Testing (PIXIT) proforma".

[28] ETSI ES 202 522: "Methods for Testing and Specification (MTS); TPLan: A notation for ex-
pressing Test Purposes".

[29] ComputerWorld. 25 Mar 2010. Online:
http://www.computerworld.com/s/article/9174120/Pwn2Own_winner_tells_Apple_Microsoft_
to_find_their_own_bugs

[30] Dailydave emaillist: http://seclists.org/dailydave/2010/q3/10

[31] http://en.wikipedia.org/wiki/Vulnerability_scanner

[32] Richard Bejtlich, “The Tao of Network Security Monitoring”, Addison-Wesley; July 2004, ISBN
0321246772

[33] Ross Anderson, “Security Engineering”, Wiley Publishing Inc, 2
nd

 edition, 2008

[34] http://sourceforge.net/projects/ratiso17799/

[35] http://www.27000-toolkit.com/

[36] http://www.iso27001security.com/html/iso27k_toolkit.html

[37] http://www.microsoft.com/MOF

[38] http://www.e-security-e-commerce-security.com/

[39] http://www.microsoft.com/downloads/details.aspx?FamilyID=59888078-9DAF-4E96-B7D1-
944703479451

[40] http://www.microsoft.com/security/sdl/adopt/threatmodeling.aspx

[41] http://riskwatch.com/

[42] http://www.realismssoftware.com/

[43] http://www.citicus.com/

[44] http://www.callio.com/secura.php

[45] http://www.infogov.co.uk/proteus_enterprise/

[46] http://www.countermeasures.com/

[47] http://www.bsi.bund.de/gstool

[48] http://www.eclipse.org/modeling/emf/

[49] http://www.eclipse.org/Xtext/

[50] http://www.cebos.com/solutions/risk-management-software/

[51] http://www.incom.com.au/Products/EnterpriseRiskManager.aspx

[52] http://msdn.microsoft.com/en-us/magazine/dd347831.aspx

[53] http://www.cramm.com/capabilities/risk.htm

Review of security testing tools

Deliverable ID: D1_1

Page : 100 of 100

Version: 1.1
Date : 27.6.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

[54] A. Abou El Kalam, R. El Baida, P. Balbiani, S. Benferhat, F. Cuppens, Y. Deswarte, A. Miège, C.
Saurel and G. Trouessin. Organization Based Access Control. IEEE 4th International Workshop on
Policies for Distributed Systems and Networks, Lake Come, Italy, June 4-6, 2003.

[55] http://motorbac.sourceforge.net/

[56] http://www.orbac.org/

[57] Charlie Miller. "Babysitting an army of monkeys: An analysis of fuzzing four products with 5
lines of Python". CanSecWest 2010. Vancouver, Canada. March 25, 2010.

[58] ETSI ES 201 873-1: “Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; Part 1: TTCN-3 Core Language”;
http://webapp.etsi.org/workprogram/SimpleSearch/QueryForm.asp

[59] Diamonds consortium, “Deliverable D1.WP2: State of the Art in Risk Analysis Techniques
For Security Testing”.

[60] Heikki Kortti. Buzz on Fuzzing. Codenomicon whitepaper. Dec 9th, 2007. Available online:
http://www.codenomicon.com/products/buzz-on-fuzzing.shtml

