

Initial Security Test Patterns Catalogue

Deliverable ID: D3.WP4.T1

Page : 1 of 34

Version: 1.0
Date : 30.05.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Initial Security Test Patterns Catalogue

Version: 1.0
Date : 30.05.2012
Pages : 34

Editor: Alain-G. Vouffo Feudjio

Reviewers: TL, itrust, TU Graz

To: DIAMONDS Consortium

The DIAMONDS Consortium consists of:

Codenomicon, Conformiq, Dornier Consulting, Ericsson, Fraunhofer FOKUS, FSCOM, Gemalto, Get IT, Giesecke
& Devrient, Grenoble INP, itrust, Metso, Montimage, Norse Solutions, SINTEF, Smartesting, Secure Business
Applications, Testing Technologies, Thales, TU Graz, University Oulu, VTT

Status: Confidentiality:

[
[
[
[

 X

]
]
]
]

 Draft
 To be reviewed
 Proposal
 Final / Released

[
[
[

x]
]
]

 Public
 Restricted
 Confidential

 Intended for public use
 Intended for DIAMONDS consortium only
 Intended for individual partner only

Initial Security Test Patterns Catalogue

Deliverable ID: D3.WP4.T1

Page : 2 of 34

Version: 1.0
Date : 30.05.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Deliverable ID: D3.WP4.1

Title:

Initial Security Test Patterns Catalogue

Summary / Contents:
This document provides an initial catalogue of security test patterns identified in the DIAMONDS
project and used for deriving security tests applicable to the featured case studies.

Contributors to the document:
Roland Groz (Grenoble INP), Stéphane Maag (Institut Telecom Paris), Laurent Mounier (Grenoble
INP), Sanjay Rawat (Grenoble INP), Jean-Luc Richier (Grenoble INP), Alain-G. Vouffo Feudjio
(FOKUS)

 Copyright DIAMONDS Consortium

Initial Security Test Patterns Catalogue

Deliverable ID: D3.WP4.T1

Page : 3 of 34

Version: 1.0
Date : 30.05.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

TABLE OF CONTENTS
1. Introduction .. 7	

2. Security Test Patterns and the DIAMONDS Methodology ... 7	

2.1	
 Definition of Security Test Patterns ... 7	

2.2	
 Security Test Patterns in the Methodology .. 7	

2.2.1	
 Information Technology Security Evaluation Criteria (ITSEC) ... 8	

2.2.2	
 Security Test Pattern .. 8	

2.2.3	
 A Workable Model for Security Test Patterns .. 10	

2.2.4	
 An Example of Proposed Methodology Mapped to SmartTesting Testing Process 11	

3. A SECURITY Test Pattern Template .. 11	

4. Initial Test Patterns Catalogue ... 13	

4.1	
 Generic Security test Patterns ... 13	

4.1.1	
 Test Pattern: Verify audited event’s presence ... 13	

4.1.2	
 Test Pattern: Verify audited event’s content .. 14	

4.1.3	
 Test Pattern: Verify default-authentication credentials to be disabled on production system 15	

4.1.4	
 Test Pattern: Verify presence/efficiency of prevention mechanism against brute force
authentication attempts (active, passive) ... 17	

4.1.5	
 Test Pattern: Verify presence/efficiency of encryption of communication channel between
authenticating parties (active, passive) .. 19	

4.1.6	
 Test Pattern: Usage of Unusual Behavior Sequences ... 20	

4.1.7	
 Test Pattern: Detection of Vulnerability to Injection Attacks ... 22	

4.1.8	
 Test Pattern: Detection of Vulnerability to Data Structure Attacks ... 23	

4.2	
 Security Test Patterns based on MITRE ... 24	

4.2.1	
 Attacking a Session Management .. 24	

4.2.2	
 Attack of the authentication mechanism .. 26	

4.2.3	
 Testing the safe storage of authentication credentials ... 27	

4.2.4	
 Open Redirect .. 28	

4.2.5	
 Uploading a malicious file .. 29	

4.2.6	
 Searching for documented passwords ... 30	

4.2.7	
 Impersonating an external server ... 31	

4.2.8	
 Accessing resources without required credentials ... 32	

4.2.9	
 Ensuring confidentiality of sensitive information .. 33	

5. Summary of Test Patterns Catalogue .. 33	

References ... 34	

Initial Security Test Patterns Catalogue

Deliverable ID: D3.WP4.T1

Page : 4 of 34

Version: 1.0
Date : 30.05.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

 FIGURES

Figure 1 - Security Test Pattern .. 10	

Initial Security Test Patterns Catalogue

Deliverable ID: D3.WP4.T1

Page : 5 of 34

Version: 1.0
Date : 30.05.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

HISTORY
Vers. Date Author Description
0.1 2012/04/11 A. Vouffo Document creation
1.0 2012/05/30 A. Vouffo Final version

APPLICABLE DOCUMENT LIST
Ref. Title, author, source, date, status DIAMONDS ID
1

Initial Security Test Patterns Catalogue

Deliverable ID: D3.WP4.T1

Page : 6 of 34

Version: 1.0
Date : 30.05.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

EXECUTIVE SUMMARY
Patterns are a well-known and established mean for capturing knowledge in a structured manner to facilitate
the instantiation of new solutions to recurrent problems. As a domain in which a huge amount of knowledge
is available, but disseminated through various sources and thus difficult to reuse, security testing could
significantly benefit from test patterns and their integration in the security testing process. The DIAMONDS
project’s work package 4 has therefore dedicated some efforts in designing a methodology for enabling such
an integration of security test patterns.
This deliverable provides a first set of security test patterns identified so far in the DIAMONDS project
through the various case studies being conducted and covering the different domains addressed in the
project.

Initial Security Test Patterns Catalogue

Deliverable ID: D3.WP4.T1

Page : 7 of 34

Version: 1.0
Date : 30.05.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

1. INTRODUCTION
This deliverables presents first results of task 4.1 of the DIAMONDS project dedicated to applying patterns to
model-based security testing. The document is organized as follows: The next section introduces the
concept of security test patterns and how it integrates into the overall DIAMONDS methodology. Section 3
goes on and introduces a template for security test pattern that will be used for capturing patterns into the
catalogue presented in Section 4. Finally, Section 5 concludes and summarizes the document.

2. SECURITY TEST PATTERNS AND THE DIAMONDS METHODOLOGY

2.1 DEFINITION OF SECURITY TEST PATTERNS

Security testing is a domain in which a lot of knowledge has been collected from a significant amount of
research work done in recent years. Numerous guidelines and best practices have been identified and are
used at several instances. Patterns are an established approach for facilitating the reuse of known solutions
to recurring problems in various domains. Originally, patterns were introduced by Ch. Alexander[1], a
construction architect, to capture the essence of sound and well-established design in the architecture of
buildings so that they could serve as guidance for other architects in designing new buildings. That approach
was successfully applied to software design and engineering in general by the so-called Gang-of-Four
(GoF)[2] and other authors later on. More recently, there have been some efforts to applying the same
approach to testing and test automation, given the similarities between those disciplines and generic
software development [2][3].
Software security is another domain in which patterns have been gaining more popularity recently. In fact
numerous works exist on security patterns, i.e. patterns that aim at improving security capabilities of software
system (procedures, design, architecture) [7].
However, security test patterns are a relatively new research field. For example, SecurityTestPatterns.org
provides a catalogue of security test patterns [15].
This catalogue lists some 10 security test patterns, based on a well-defined template. The catalogue also
specifies how each of those test patterns is associated to weaknesses from MITRE‘s Common Weaknesses
Enumeration (CWE) [13] and provides a black-box test procedure including expected results templates for
each of them.
The SecurityTestPatterns.org group define security test patterns as follows:
„A software security test pattern is a recurring security problem, and the description of the a test case that
reveals that security problem, that is described such that the test case can be instantiated a million times
over, without ever doing it the same way twice. “

The above definition slightly differs from our definition in that, rather than emphasizing on the testing aspects
of security, it focusses on the security problem itself.

Another difference resides in the fact that the template defined and used by the SecurityTestPatterns.org
group does not align to problem-solution-consequences schema recommended in pattern literature.

The test patterns are mostly destructive and do not address testing based on security objectives or SFRs
No classification of test patterns

We define a test pattern as the expression of the essence of a well-understood solution to a recurring
software testing problem. This definition is basically a transcription of the generic pattern definition provided
by Christopher Alexander [1] into the software testing discipline.

2.2 SECURITY TEST PATTERNS IN THE METHODOLOGY

Initial Security Test Patterns Catalogue

Deliverable ID: D3.WP4.T1

Page : 8 of 34

Version: 1.0
Date : 30.05.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

As aforementioned, there have been numerous definitions of patterns, suitable for different contexts.
Perhaps the notion of "design patterns" could be close to defining security test patterns. A design pattern is a
description of a recurring problem and a well-defined description of the core solution to the problem that is
described such that the pattern can be used many times but never in exactly the same way [1]. According to
SecurityTestPatterns.org group [15], a software security test pattern is a template of a test case that exposes
vulnerabilities, typically by emulating what an attacker would do to exploit those vulnerabilities.

The above definition [15], while being simple and short, may only suffice well to the notion of security test
patterns at lower level, while that of [1] remains at much higher level. Our notion, on the other hand, is visible
in the following question: "what is the pattern to test the security properties of a System under Test (SUT)?"
Here the security properties can broadly be defined as CIA i.e. confidentiality, integrity and availability. We,
therefore, embrace both of the above definitions to define patterns that are, on the one hand, generic enough
to adapt to various testing strategies and, on the other hand, include patterns for concrete security test
cases.

It should be noted that CIA can be extended to include other aspects of security properties. Our hypothesis
is that in order to test the security properties of SUT (i.e. CIA) that are defined as much higher level of
hierarchy, we need to define the pattern in terms of lower level functionalities/mechanism that are related to
those CIA properties. To support our hypothesis, we present an analogy that describes this relation between
higher and lower hierarchies.

2.2.1 Information Technology Security Evaluation Criteria (ITSEC)
The Information Technology Security Evaluation Criteria (ITSEC) is a structured set of criteria for
evaluating computer security within products and systems [9]. This criterion provides a rather descriptive and
step wise step procedure to evaluate the security of the system/product. The target of evaluation is the
product/system that is being evaluated for its security features.
A Target of Evaluation (TOE) which provides security (some combination of confidentiality, integrity and
availability) must contain appropriate security features [2].
In these criteria, security features are viewed at three levels. The most abstract view is of security objectives:
the contribution to security which a TOE is intended to achieve. To achieve these objectives, the TOE must
contain certain security enforcing functions. These security enforcing functions, in turn, must be implemented
by specific security mechanisms. These three levels can be summarised as follows:

a) Security Objectives - Why the functionality is wanted.
b) Security Enforcing Functions - What functionality is actually provided.
c) Security Mechanisms - How the functionality is provided.

In the above, the Security Objectives can be described as CIA (confidentiality, integrity and confidentiality)
model. Security Enforcing Functions are well-known techniques for addressing objectives, such as
Identification and Authentication, Access Control, Accountability, Audit, Object Reuse, Accuracy, Reliability
of Service, and Data Exchange. Finally, the Security Mechanisms are the actual methods used to implement
those enforcing functions.
The assessment consists of verifying that for each security target of the TOE, there exists at least one
enforcing function and a corresponding mechanism. In case of any foreseen threat to the TOE, there are
enforcing functions and mechanisms to counter that threat.
In the view of the above description, we can notice that in order to evaluate the security of the system, we
need to define the security properties at some higher level and then we check the enforcing
functions/mechanisms that are related to those higher level properties i.e. the functions/mechanisms that
enable those properties.

2.2.2 Security Test Pattern
We adapt the above phenomenon to the arena of security test patterns. It should be noted that ITSEC
security evaluation criteria, in a way, is positive testing for its security properties i.e. what security features

Initial Security Test Patterns Catalogue

Deliverable ID: D3.WP4.T1

Page : 9 of 34

Version: 1.0
Date : 30.05.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

are present in the system. We, on the other hand, are more interested in security test patterns that
compromise the security of the SUT. Therefore, from this perspective, whatever is positive for us is negative
for ITSEC criteria. Following (adopting) the above terminology, we can define security test pattern in terms of
three subtasks:

2.2.2.1 Security Objectives
We define the security (test) objective as “what security properties are needed to be tested?” Here, our aim
is to establish if we can breach/break the above stated security properties. The properties of interest (other
than CIA) can be an input to the framework. These properties can be obtained by other approaches, for
example, risk based analysis (see, e.g., FOKUS contribution in D1&2 WP2) or manual inspection of the SUT
etc. A publicly available example of risk based model is Common Weakness Risk Analysis Framework
(CWRAF) [12].

2.2.2.2 Security Weakening Functions
The next step is to define what software weaknesses (vulnerabilities) compromise the security properties
(objectives) (cf. the enforcing function of ITSEC). Basically, the weakening functions describe the
weakness/problems that affects some (or all) of CIA security properties. The main objective of this step is to
identify a functional workflow of the applications from security standpoint i.e. identify the weak points in the
SUT by defining a functional model, for example, as is being followed by SmartTesting (see D2.WP3, section
2.2). By performing this step, we can figure out points in the model of the SUT that may exhibit weaknesses.
We may term them as weak-points. The idea of defining weak-points comes from the observations that
security properties are associated with the SUT at certain points in its execution. For example, authentication
can be tested at point when the SUT is performing some authentication related task (e.g. login page).
Another aspect of this step is to understand the SUT's behaviour w.r.t. its environment i.e. how does it
interact with its environment in terms of data consumption and the associated functionality. As will be
explained in the next paragraph, with this knowledge, we again get weak-points that are entry points for
many attacks. These weak-points are akin to the notion of MITRE’s common weakness enumeration (CWE)
[13] (see section 2.2.3 for more details). At this point, we distinguish two levels of security properties:

1) High level properties i.e. functional security properties; and
2) low level properties i.e. non-functional properties.

The former covers the functional view of the security properties, for example use of appropriate
cryptographic primitives, whereas the later is more concerned with the low level vulnerabilities, for example
buffer overflow leading to arbitrary code execution. This terminology is similar to what is defined in OWASP
testing guide [14]. An exhaustive strategy should address both of these levels adequately. Therefore, coming
back to our terminology, these enforcing functions are positive weaknesses that we should be interested in.

2.2.2.3 Enabling Mechanisms
As with the ITSEC, we now proceed to find out the patterns that enable them. These patterns can be called
mechanisms to implement weakening functions. From security testing point of view, these mechanisms are
nothing but the concrete tests that may exhibit the attacker's like behaviour. The kind of test that we want to
generate depends on weak-points (i.e. weaknesses exhibited at that point). Their inputs may come from a
variety of sources. We can make use of, for example, fuzzing framework to generate inputs or open
repositories like MITRE’s Common Vulnerabilities and Exposures (CVE) [11] and Common Attack
Pattern Enumeration and Classification (CAPEC) [10]. These mechanisms can be considered either as
patterns corresponding to some security properties breach or as instances of weakening functions
corresponding to some security properties breach. Now, if we want to test a particular security property, for
example, confidentiality, we will look for weakening functions (i.e. find the weak-points) that compromise that
property (i.e. the confidentiality) and select the corresponding mechanisms to test with a concrete test case.
Figure 1 illustrates the whole process.

Initial Security Test Patterns Catalogue

Deliverable ID: D3.WP4.T1

Page : 10 of 34

Version: 1.0
Date : 30.05.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 1 - Security Test Pattern

In this way, we observe that the security test objectives that are described at higher level, can be realized by
considering the corresponding enabling mechanisms at lower level. Therefore, each lower level mechanism
is related to one or more higher level security test objectives.

2.2.3 A Workable Model for Security Test Patterns
In this section, we provide a more concrete example of the aforementioned security test pattern in terms of
CWE, CAPEC and CVE. This example is more suitable for low level security properties. The same can,
however, be adapted to any other scenario by replacing CWE, CAPEC or CVE by appropriate terms as is
used by the testers.
Let us assume that the security test objectives is the set {confidentiality, integrity, availability}, i.e. our goal is
to test if we can breach any of them (or the stated one from the set). The next step is to find corresponding
enforcing functions. For that we make use of CWE list. Each CWE ID has a field called “Common
Consequences (Scope)” which describes the affect of the weakness in terms of above said objectives.
Therefore, we can select all the CWE IDs, where the Common Consequences (Scope) field intersect with
the objectives. Also included in each CWE ID, are two other fields, called “Observed Examples” and
“Related Attack Patterns”. The first of them is related to CVE IDs which indicates that an instance of the
CWE ID is observed. The later one is the attack patterns pointing to some “CAPEC-ID” which means there is
an attack patterns to exploit the corresponding CWE ID. Therefore, for each selected CWE IDs, we get all
the CVE IDs and CAPEC IDs which are related to this CWE ID. These are the mechanisms that actually test
the security objectives i.e. there are our test cases.
The whole process can be described as the following algorithm:

Input:

A set SO of Security Objective;

 CWE database;

 CVE database;

Initial Security Test Patterns Catalogue

Deliverable ID: D3.WP4.T1

Page : 11 of 34

Version: 1.0
Date : 30.05.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

 CAPEC database;

for sec in SO:

 for cwe_id in CWE:

 if cwe_id->common Consequence is sec:

 for capec_id in cwe_id->Related Attack Patterns:

 test_case= CAPEC.get(capec_id)

 for cve_id in cwe_id-.Observed Examples:

 test_case= CVE.get(cve-id)

2.2.4 An Example of Proposed Methodology Mapped to SmartTesting Testing
Process
In this section, we provide a possible mapping of the proposed methodology for security test pattern to
smartTesting security testing process. The objective is to demonstrate the suitability and applicability of the
proposed security test patterns to the existing Diamonds testing process.
SmartTesting has provided details of its security testing methodology in the deliverable D3.WP2.T2_3 under
the section “Smartesting Model-Based Security Testing from behavioural models and security-oriented Test
Purposes”. We identify the following three main steps involve in the testing process.

1. Inputs Artifacts: This is mainly to recognize the security properties that are required to be tested.
2. Working Artifacts: This step involves defining security test purpose and objectives. Basically, this

provides a correlation between security properties and the action or behaviour that may break those
properties. SmartTesting framework involves security test engineer to provide these details.

3. Output Artifacts: Finally the test cases are generated to access the security features of the SUT.

In the view of above description, it is easy to observe that point 1 corresponds to first task “security
Objectives” of the proposed methodology. Point 2 is related to “security Weakening Function” task as in this
step, security engineer analyzes the SUT model from security standpoint and decides the further course of
action by figuring out the weaknesses. This step becomes the basis for defining the description of test
generation step. As a result, point 3 directly maps the third task “enabling mechanism”. It should be noted
that at point 2, security engineer may decide to also consider low level security properties to be tested. In
this context, we may like to point out that vulnerability patterns as described in deliverable D3.WP2.T2_3
“Patterns for Buffer Overflow Vulnerability” can be used to further derive the test generation process.
Thus, we may note that the proposed “security test pattern” is generic enough to encompass different
security testing methodologies, being developed in Diamonds.

3. A SECURITY TEST PATTERN TEMPLATE
While (test) patterns may be helpful for enhancing the level of automation in the software engineering
process, they are mainly aimed to be readable and understandable by human beings. The template used in
this section takes this into account and defines the types of information expected to be provided for each
security test pattern.

Initial Security Test Patterns Catalogue

Deliverable ID: D3.WP4.T1

Page : 12 of 34

Version: 1.0
Date : 30.05.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Pattern name A meaningful name for the test pattern.

Context To which specific context does it apply? This includes the kind of test pattern
(organisational vs. design, generic, architectural, behavioural or test data etc.)
as well as the security approach(es) in which the pattern may be applied. The
concept of security approach is used here as presented by Schumacher et al in
their book on security patterns[7]. According to them, security approaches
define groups of related ways to address potential security violations. They
identify the following group of security approaches:

- Planning embodies the organization-wide standard operation
procedures (documentation) for prevention, detection, and response.

- Prevention consists in efforts aiming at actively impeding unwanted
incidents, i.e. undesirable activities that would compromise security
assets.

- Detection aims at identifying or detecting unwanted incidents on the
element to be protected.

- Diligence refers to ongoing proactive measures for updating security
plans to improve the overall security posture of an organization.

- Response approaches are those addressing unwanted incidents or
other security violations, after they have been detected

As rightly indicated in [7] security approaches are not usually applied alone, but
in various combinations, given the natural dependencies between each of the
aspects they cover. Therefore, the context for a security test pattern may
involve a combination of several security approaches.

Problem/Goal What is the testing problem this pattern addresses and which are the forces
that come into play for that problem? In certain cases a pattern may not solve a
specific problem, but provide a mean for achieving a particular goal with regard
to security testing. In those cases, the goal(s) to be achieved by the pattern
should be provided instead.

Solution A full description of the test pattern, potentially including examples of
applications. Where applicable, dedicated notations such as the UML Testing
Profile (UTP), TTCN-3 or similar will be used for illustration.

Known uses Known applications of the test pattern in existing test solutions or existing
concepts enabling the application of the test pattern in existing test
specification or test modelling languages.

Discussion A short discussion on the pitfalls of applying the pattern and the potential
impact it has on test design in general and on other patterns applicable to that
same context in particular.

Related patterns
(optional)

 Test design pattern related to this one or system design patterns in which
faults addressed by this test pattern might occur. This section is optional and
will be omitted, if no related pattern can be named.

References (optional) Bibliographic references to the pattern or external associated elements.This
section is also optional and will be omitted, if no reference can be provided.

Table 1: Security Test Pattern Template

Initial Security Test Patterns Catalogue

Deliverable ID: D3.WP4.T1

Page : 13 of 34

Version: 1.0
Date : 30.05.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

4. INITIAL TEST PATTERNS CATALOGUE

4.1 GENERIC SECURITY TEST PATTERNS
	

Test Pattern: Verify audited event’s presence .. 13	

Test Pattern: Verify audited event’s content ... 14	

Test Pattern: Verify default-authentication credentials to be disabled on production system 15	

Test Pattern: Verify presence/efficiency of prevention mechanism against brute force authentication
attempts (active, passive) ... 17	

Test Pattern: Verify presence/efficiency of encryption of communication channel between
authenticating parties (active, passive) ... 19	

Test Pattern: Usage of Unusual Behavior Sequences ... 20	

Test Pattern: Detection of Vulnerability to Injection Attacks .. 22	

Test Pattern: Detection of Vulnerability to Data Structure Attacks .. 23	

4.1.1 Test Pattern: Verify audited event’s presence

Pattern name Verify audited event’s presence

Context Test Pattern Kind: Behavioral
Testing Approach(es): Detection

Problem/Goal This pattern addresses how to check that a system logs a particular type of
security-relevant event for auditing purpose

Solution Test procedure template
1. Activate the system’s logging functionality
2. Clear all existing log entries
3. Record current system time ts
4. Stimulate the system to generate the expected event type
5. Check that the system’s log contains entries for the expected event /

Taking into account only logs displaying timestamps tl satisfying following
condition: tl > ts

Known uses Common Criteria SFRs[17]: FAU_GEN.1, FAU_GEN.2
Discussion This pattern assumes that the test framework provides means for tracing and

evaluating the logs produced by the SUT. Evaluation may be performed online
(i.e. quasi simultaneously, while the system is still running) or offline, i.e. after
the system has completed its operation.
An interesting issue to be considered is how to apply this pattern in situations
whereby it may be impossible or too costly to clear the logs repository or to
restart the running system.

Related patterns
(optional)

• Sandwich test architecture pattern[5]
• Proxy test architecture pattern[5]
• Verify audited event’s content (Section 4.1.2)

References FAU_GEN.1, FAU_GEN.2

Initial Security Test Patterns Catalogue

Deliverable ID: D3.WP4.T1

Page : 14 of 34

Version: 1.0
Date : 30.05.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

4.1.2 Test Pattern: Verify audited event’s content

Pattern name Verify audited events’ content

Context Test Pattern Kind: Behavioral

Testing Approach(es): Detection

Problem/Goal This pattern addresses how to check that a system logs a particular type of
security-relevant event for auditing purpose

Solution Test procedure template:

1. Activate the system’s logging functionality

2. Clear all existing log entries / Record current system time ts

3. Stimulate the system to generate the expected event type

4. Check that the system’s log contains entries for the expected event /
Taking into account only logs displaying timestamps tl with tl > ts

5. Store log entries containing the expected event type

6. Open the log entries and verify that their content meets the specified
requirements

Known uses Common Criteria SFRs: FAU_GEN.1[17], FAU_GEN.2[17]

Discussion This pattern assumes that the test framework provides means for tracing and
evaluating the logs produced by the SUT. Evaluation may be performed online
(i.e. quasi simultaneously, while the system is still running) or offline, i.e. after
the system has completed its operation.

An interesting issue to be considered is how to apply this pattern in situations
whereby it may be impossible or too costly to clear the logs repository or to
restart the running system.

Related patterns
(optional)

• Sandwich test architecture pattern[5]

• Proxy test architecture pattern[5]

• Extends test pattern Verify audited event’s presence (Cf. Section
4.1.1) by addin verification of the audited event’s content.

References CWE 311[13]

Initial Security Test Patterns Catalogue

Deliverable ID: D3.WP4.T1

Page : 15 of 34

Version: 1.0
Date : 30.05.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

4.1.3 Test Pattern: Verify default-authentication credentials to be disabled on
production system

Pattern name Verify default-authentication credentials to be disabled on production system

Context Test pattern kind: Behavior

Testing Approach(es): Prevention

Problem/Goal Enabled default authentication mechanisms, sometimes resulting from hard-
coded credentials in source code are listed among MITRE’s 2011 top 25 most
dangerous software errors [20] from the well-known CWE. For many software
products, providing such a set of default authentication credentials is
unavoidable, for example in a situation whereby some initial settings require an
account on the system after it is installed. Although those default credentials
are supposed to be modified before the system is actually deployed and made
available to the outside world, several cases have been reported in which this
was omitted, thus allowing attackers to bypass the authentication procedure
and obtaining access to potentially sensitive data. This is particularly relevant
for systems based on open-source software, given that the parameters for
those default credentials are known to a large group of potential attackers.

Therefore, providing testcases for detecting this kind of errors is very important
for any software-based system with some authenticated interface to the
outside world.

Solution Test procedure template: Depending on whether a black-box or a white-
box testing approach is applicable, different test procedures may be
appropriate.

Black-box testing procedure template

1. Create (or reuse) a dictionary of default credentials usually available in
open source software (e.g. login: admin, password: password; login:
root; password: pass; etc.)

2. Try to authenticate using each time a new combination of credentials
from the dictionary of step 1

3. If any of the authentication attempts is successful set FAIL verdict.
Otherwise set PASS.

White-box testing procedure template

1. Create (or reuse) a dictionary of default credentials usually available in
open source software (e.g. login: admin, password: password; login:
root; password: pass; etc.)

2. Search the source code for any character string containing an element
from the dictionary of step 1. Also include configuration files in the
search.

Initial Security Test Patterns Catalogue

Deliverable ID: D3.WP4.T1

Page : 16 of 34

Version: 1.0
Date : 30.05.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

3. If matching character strings are found, check that the source code
implements a mechanism for enforcing the modification of
authentication credentials.

Known uses Among the DIAMONDS project case studies, the automotive case study has
identified some elements of vulnerability derived from the weakness addressed
by this test pattern:

Several Bluetooth devices use “0000” as default PIN to access control.
Therefore a test case verifying that the default PIN code has been replaced by
a more user-specific one makes perfect sense in that context.

Discussion If a black-box testing approach is chosen to apply this pattern, then it should be
ensured that if present, a mechanism to block repetitive authentication
attempts is deactivated, to avoid the SUT interpreting step 2 of the test
procedure as a brute force hacking attempt, potentially leading to a cascade of
other unwanted incidents unrelated with the actual test case.

Related patterns
(optional)

• Mutually exclusive relation to pattern Verify presence/efficiency of
prevention mechanism against brute force authentication attempts (Section
4.1.4)

References CWE 798[13], OWASP-AT-003[14]

Initial Security Test Patterns Catalogue

Deliverable ID: D3.WP4.T1

Page : 17 of 34

Version: 1.0
Date : 30.05.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

4.1.4 Test Pattern: Verify presence/efficiency of prevention mechanism against
brute force authentication attempts (active, passive)

Pattern name Verify presence/efficiency of prevention mechanism against brute force

authentication attempts

Context Test pattern kind: Behavior

Testing Approach(es): Prevention, Detection

Problem/Goal Password brute-forcing is a well-known attack pattern on computing systems
providing a password-based authentication scheme (CAPEC 49[10]).

Solution Test procedure template:

The mechanism for preventing may be passive, active or a combination of
both.

An example of passive mechanisms consist in adding elements on the
authentication interface that cannot be interpreted automatically by a
machine, but require human intervention. This is widely used in
authentication forms on web-based interfaces in the form of so-called
captchas, i.e. graphical images created dynamically, but designed in a way
that makes them difficult to be read automatically by a computer program.
The authenticating client is required to complete his/her credentials with
the information encoded in the picture to ensure that a human being is well
submitting the information.

On the other hand, active mechanisms will initiate a series of steps to
impede that the number of failed authentication attempts from the same
source does not exceed a predefined threshold, beyond which appropriate
steps are undertaken as counter-measures.

The following test procedure template applies for an active prevention
mechanism against password brute-forcing:

Assuming that the maximal number of failed authentication attempts that
triggers the defense mechanism is Fmax, and that Tmax is the maximal delay
beyond which the defense mechanism is expected to come into play,
proceed as follows

1. Use invalid credentials to authenticate on the system for Fmax number
of times or repetitively for a duration of Tmax

2. Check that the SUT indicates that the used credentials are invalid and
provides the user alternatives for the case he/she lost his/her
credential details.

3. Optional: Check that failed authentication attempts are logged by the
SUT and that the log entries contain as much information on the

Initial Security Test Patterns Catalogue

Deliverable ID: D3.WP4.T1

Page : 18 of 34

Version: 1.0
Date : 30.05.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

authentication source as possibly available.

4. Use invalid credentials once more to authenticate on the system

5. Check that the system reacts in a way that impedes a new
authentication attempt unless certain steps are undertaken by the
authenticating party (i.e. the test client). Possible reactions include:

- (Temporarily) Blocking future authentication attempts from the
same client. This assumes the authentication provider is able
to clearly identify the source for the authentication request
(e.g. using a combination of IP-Address, Host name, Operating
System, MAC-Address, MSISDN, etc.)

- Introducing additional hurdles to make successive
authentication attempts from the same source more difficult,
both technically and from a time and resource perspective.

Known uses This security test pattern is widely used in all domains in which password-
based authentication is applied (e.g. web-based applications and services,
banking)

Common Criteria SFRs: FIA_AFL.1 (Authentication Failures)[17]

Discussion

Related patterns
(optional)

• This pattern is applicable in cases whereby the Authenticator security
pattern[7] is used to ensure that entities accessing of a system are known
as legitimate users thereof.

• If the system logs all security-relevant incidents that occur at its external
boundaries, as highly recommended by good practices in information
systems security, then this pattern can be combined with the Verify audited
event’s presence pattern and the Verify audited event’s content described
in Section 4.1.1 and Section 4.1.2 respectively

• Mutually exclusive relation with described in Section 4.1.3

References CWE307[13]

Initial Security Test Patterns Catalogue

Deliverable ID: D3.WP4.T1

Page : 19 of 34

Version: 1.0
Date : 30.05.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

4.1.5 Test Pattern: Verify presence/efficiency of encryption of communication
channel between authenticating parties (active, passive)

Pattern name Verify presence/efficiency of encryption of communication channel between

authenticating parties

Context Test pattern kind: Behavior

Testing Approach(es): Prevention

Problem/Goal Man-in-the-middle attacks are known to be among the most severe attacks an
information system might face with regard to its security [21]. One of the
mitigation approaches consists in using encryption mechanisms (e.g. SSL) to
protect the data exchange between authenticating parties from eavesdropping
attempts with some of the numerous software tools freely available on the
market and as open source.

Solution Test procedure template:

The steps to undertake for the test procedure are as follows:

1. Trigger the authentication client to start the authentication process
using a well-known set of credentials

2. Check that the monitoring test component has captured the packets
exchanged between both authenticating parties.

3. Check that the captured packets do not contain any information as
plain-text that could easily be read and understood by an attacker
without a significant computation effort.

Known uses FTP_ITC.1 (Trusted channel)[17]

Discussion This test procedure is only applicable with a black-box testing approach and
requires a testing architecture whereby an entity is positioned between both
authenticating parties, with the ability to capture data traffic in both directions
between them. This kind of architecture is based on the monitoring test
component architectural pattern described in a previous FOKUS work on test
patterns [4].

Related patterns
(optional)

• Monitoring test component architectural pattern[5]

• CAPEC 94[21]

References

Initial Security Test Patterns Catalogue

Deliverable ID: D3.WP4.T1

Page : 20 of 34

Version: 1.0
Date : 30.05.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

4.1.6 Test Pattern: Usage of Unusual Behavior Sequences

Pattern name Usage of Unusual Behavior Sequences

Context Test pattern kind: Behavior

Testing Approach(es): Prevention

Problem/Goal Security of information systems is ensured in many cases by a strict and clear
definition of what constitutes valid behavior sequences from the security
perspective on those systems. For example, in many systems access to
secured data is pre-conditioned by a sequence consisting of identification, then
authentication and finally access. However, based on vulnerabilities in the
implementation of software systems (e.g. in the case of a product requiring
authentication, but providing an alternate path that does not require
authentication – CWE 288[13]), some attacks (e.g. Authentication bypass,
CAPEC 115[10]) may be possible by subjecting the system to a behavior
sequence that is different from what would be normally expected. In certain
cases, the system may be so confused by the unusual sequence of events that
it would crash. Thus potentially making it vulnerable to code injection attacks.
Therefore uncovering such vulnerabilities is essential for any system exposed
to security threats. This pattern describes how this could be achieved through
automated testing.

Solution Test procedure template:

1. Use a specification of the system to clearly identify the normal behavior
sequence it expects in interacting with an external party. If possible,
model this behavior sequence using a notation such as UML, which
provides different means for expressing sequenced behavior, e.g.
sequence diagrams or activity diagrams.

2. Run the normal behavior sequence (from step 1) on the system and
check that it meets its basic requirements.

3. From the sequence of step 1, derive a series of new sequences
whereby the ordering of events would each time differ from the initial
one.

4. Subject the system to each of the new behavior sequences and for
each of those

- Check that the system does not show exceptional behavior (no
live-/deadlock, no crashing, etc.)

- Check that no invalid behavior sequence is successfully
executed on the system (e.g. access to secure data without
authentication)

- Check that the system records any execution of an invalid
events sequence (optional)

Initial Security Test Patterns Catalogue

Deliverable ID: D3.WP4.T1

Page : 21 of 34

Version: 1.0
Date : 30.05.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Known uses Model-based Behavior fuzzing of sequence diagrams is an application of this
pattern

Discussion

Related patterns
(optional)

References CWE 288[13], CAPEC 115[10])

Initial Security Test Patterns Catalogue

Deliverable ID: D3.WP4.T1

Page : 22 of 34

Version: 1.0
Date : 30.05.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

4.1.7 Test Pattern: Detection of Vulnerability to Injection Attacks

Pattern name Detection of Vulnerability to Injection Attacks

Context Test pattern kind: Data

Testing Approach(es): Prevention

Problem/Goal Injection attacks (CAPEC 152[10]) represent one of the most frequent security
threat scenarios on information systems. They basically consist in an attacker
being able to control or disrupt the behavior of a target through crafted input
data submitted using an interface functioning to process data input [10]. To
achieve that purpose, the attacker adds elements to the input that are
interpreted by the system, causing it to perform unintended and potentially
security threatening steps or to enter an unstable state.

Although it could never be exhaustive, testing information systems resilience to
injection attacks is essential to increase their security confidence level. This
pattern addresses methods for achieving that goal.

Solution Test procedure template:

1. Identify all interfaces of the system under test used to get input with the
external world, including the kind of data potentially exchanged through
those interfaces.

2. For each of the identified interfaces create an input element that
includes code snippets likely to be interpreted by the SUT. For
example, if the SUT is web-based, programming languages and other
notations frequently used in that domain (JavaScript, JAVA…) will be
used. Similarly, if the SUT involves interaction with a database,
notations such as SQL may be used. The additional code snippets
should be written in such a way that their interpretation by the SUT
would trigger events that could easily be observed (automatically) by
the test system. Example of such events include:

- Visual events: e.g. a pop-up window on the screen

- Recorded events: e.g. an entry in a logging file or similar

- Call-back events: e.g. an operation call on an interface
provided by the test system, including some details as
parameters

3. Use each of the input elements created at step 2 as input on the
appropriate SUT interface, and for each of those

- Check that none of the observable events associated to an
interpretation of the injected code is triggered

Known uses

Initial Security Test Patterns Catalogue

Deliverable ID: D3.WP4.T1

Page : 23 of 34

Version: 1.0
Date : 30.05.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Discussion The level of test automation for this pattern will mainly depend on the
mechanism for submitting input to the SUT and for evaluating potential events
triggered by an interpretation of the added probe code.

Related patterns
(optional)

• CAPEC 152[10]

References

4.1.8 Test Pattern: Detection of Vulnerability to Data Structure Attacks

Pattern name Detection of vulnerability ot data structure attacks

Context Test pattern kind: Data

Testing Approach(es): Prevention

Problem/Goal Data structure attacks (CAPEC 255[10]) consist in an attacker manipulating
and exploiting characteristics of system data structures to violate the intended
usage and protections of these structures and trigger the system to reach
some instable state or expose further vulnerabilities that could be exploited to
cause more harm.

Detecting vulnerability to data structure attacks is among the key goals of
security testing. The pattern provides a solution to that problem.

Solution Test procedure template:

1. Identify all interfaces of the system under test used to get input with the
external world, including the kind of data potentially exchanged through
those interfaces.

2. For each of the identified interfaces create an input element including
invalid values, i.e. values not meeting the requirements associated to
their type and thus potentially unexpected by the SUT

3. Use each of the input elements created at step 2 as input on the
appropriate SUT interface, and for each of those

- Check that the SUT does not enter an unstable state at any
time during the test case (no live-/deadlock, no crash, no
exception etc.)

Known uses Data Fuzzing

Discussion

Initial Security Test Patterns Catalogue

Deliverable ID: D3.WP4.T1

Page : 24 of 34

Version: 1.0
Date : 30.05.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Related patterns
(optional)

• CAPEC 255

References

4.2 SECURITY TEST PATTERNS BASED ON MITRE

As above mentioned, an interesting initiative has been carried out by the research group
SecurityTestPatterns.org. This group (composed as a research community) provides its own definition of
security test patterns and, from the analysis of vulnerability, attacks and weaknesses enumerated by MITRE,
they develop a grounded theories to design security test patterns. These defined mechanisms aim at
developing test patterns based on (i) security issues raised from the description, common consequences,
demonstrative examples, and observed CAPEC, CVE or CWE examples, and (ii) the definition of a list of
keywords extracted from the Certification Commission for Health Information Technology (CCHIT)
Ambulatory Criteria [16] in order to help pointing a tester towards the correct security test pattern.
Although their notion of security test pattern is simple, maybe too short and does not allow completing our
requirements in terms of test pattern template (see Section 3), they provide good and relevant basics to
provide a first draft of security test patterns catalogue. We depict then in the following a list of nine security
test patterns described using the template above proposed.

	

Attacking a Session Management .. 24	

Attack of the authentication mechanism ... 26	

Testing the safe storage of authentication credentials ... 27	

Open Redirect .. 28	

Uploading a malicious file .. 29	

Searching for documented passwords ... 30	

Impersonating an external server .. 31	

Accessing resources without required credentials ... 32	

Ensuring confidentiality of sensitive information .. 33	

4.2.1 Attacking a Session Management

Pattern	
 name	
 	
 Session	
 Management	
 Attack	

Context	
 Testing	
 Approach(es):	
 behavioral	
 and	
 test	
 data	

Problem/Goal	
 This	
 pattern	
 addresses	
 how	
 to	
 check	
 that	
 the	
 system	
 returns	
 an	
 authorization	
 error	

when	
 the	
 session	
 information	
 is	
 faked	
 or	
 forged,	
 and	
 that	
 no	
 sensitive	
 information	
 is	

returned	
 after	
 requests.	

Relevant	
 for	
 managing/controling	
 access	
 the	
 system.	

Solution	
 	
 Test	
 Procedure	
 Template	

1. Set	
 up	
 a	
 proxy	
 to	
 monitor	
 all	
 HTTP	
 or	
 TCP	
 traffic	
 flowing	
 to	
 or	
 from	
 the	

server.	

2. Authenticate	
 to	
 the	
 system	
 as	
 a	
 registered	
 user.	

Initial Security Test Patterns Catalogue

Deliverable ID: D3.WP4.T1

Page : 25 of 34

Version: 1.0
Date : 30.05.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

3. Access	
 one	
 other	
 page	
 or	
 screen	
 (besides	
 the	
 home	
 page	
 or	
 welcome	
 screen)	

that	
 requires	
 authorization.	

4. Log	
 out.	

5. Examine	
 a	
 captured	
 HTTP	
 request	
 or	
 TCP	
 packet	
 that	
 is	
 related	
 to	
 the	
 access	

of	
 the	
 page	
 other	
 than	
 the	
 homepage.	
 Identify	
 headers	
 or	
 fields	
 within	
 the	

request	
 or	
 packet	
 that	
 may	
 identify	
 session	
 identification	
 information.	

6. Modify	
 a	
 field	
 identified	
 in	
 the	
 earlier	
 step	
 (either	
 by	

incrementing/decrementing	
 them,	
 removing	
 them,	
 replacing	
 them	
 with	
 a	

different	
 value	
 entirely)	
 and	
 send	
 this	
 packet	
 or	
 request	
 again.	

7. Repeat	
 the	
 previous	
 step	
 for	
 up	
 to	
 five	
 fields	
 identified	
 in	
 the	
 packet	
 or	

header.	

8. Examine	
 the	
 cookies	
 or	
 local	
 connection	
 information	
 (for	
 systems	
 that	
 are	

not	
 browser-­‐based).	
 Identify	
 headers	
 or	
 fields	
 within	
 the	
 cookie	
 or	
 local	

connection	
 information	
 that	
 may	
 identify	
 session	
 identification	
 information.	

9. Modify	
 a	
 field	
 identified	
 in	
 the	
 earlier	
 step	
 (either	
 by	

incrementing/decrementing,	
 removing,	
 replacing	
 with	
 a	
 different	
 value	

entirely)	
 and	
 attempt	
 to	
 access	
 the	
 page	
 or	
 screen	
 again	
 without	
 logging	
 in.	

10. Repeat	
 the	
 previous	
 step	
 for	
 several	
 other	
 fields	
 identified	
 in	
 the	
 local	

connection	
 information	
 or	
 cookies.	

	

Known	
 uses	
 	
 Common	
 Criteria	
 SFRs:	
 FMT_MOF.1,	
 FMT_MSA	

Discussion	
 Since	
 field	
 modifications	
 and	
 resource	
 access	
 have	
 to	
 be	
 done,	
 the	
 evaluation	
 of	
 this	

pattern	
 should	
 be	
 performed	
 online.	

A	
 difficulty	
 would	
 be	
 to	
 manage	
 encryption	
 on	
 the	
 platform	
 as	
 well	
 as	
 identification	
 of	

relevant	
 fields.	

Related	
 patterns	
 - Testing	
 the	
 safe	
 transmission	
 of	
 authentication	
 credentials	

- Modify	
 Header	
 Data	

- Modify	
 Cookies	
 or	
 other	
 Stored	
 Information	

References	
 CWE-­‐311[13]	
 and	
 CWE-­‐807[13]	

Initial Security Test Patterns Catalogue

Deliverable ID: D3.WP4.T1

Page : 26 of 34

Version: 1.0
Date : 30.05.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

4.2.2 Attack of the authentication mechanism

Pattern	
 name	
 	
 Attacking	
 Authentication	
 Mechanism	

Context	
 Testing	
 Approach(es):	
 detection,	
 test	
 data	

Problem/Goal	
 This	
 pattern	
 addresses	
 how	
 to	
 check	
 that	
 the	
 system	
 handles	
 high	
 number	
 of	

authentication	
 attempts	
 with	
 incorrect	
 passwords.	

Relevant	
 for	
 authenticating	
 multiple	
 users	
 through	
 several	
 simultaneous	
 connections	

(performance).	

Solution	
 	
 Test	
 Procedure	
 Template	

1. Write	
 a	
 script	
 that	
 captures	
 and	
 replays	
 the	
 sequence	
 of	
 HTTP	
 or	
 TCP	
 signals	

for	
 authenticating	
 to	
 the	
 server.	

2. Use	
 this	
 script	
 to	
 launch	
 ten	
 authentication	
 requests	
 with	
 ten	
 separate	

passwords	
 from	
 a	
 list	
 of	
 frequently	
 used	
 passwords.	

3. If	
 the	
 system	
 attempts	
 to	
 block	
 any	
 of	
 these	
 incorrect	
 authentication	

requests,	
 check	
 that	
 there	
 are	
 no	
 manipulatable	
 fields	
 in	
 the	
 headers	
 or	

parameters	
 involved	
 in	
 these	
 requests	
 that	
 indicate	
 the	
 high	
 number	
 of	
 the	

authentication	
 requests.	

4. Examine	
 the	
 request	
 and	
 response	
 sequences	
 for	
 each	
 of	
 those	
 HTTP	
 or	
 TCP	

signals	
 and	
 identify	
 fields	
 that	
 may	
 contain	
 session	
 identification	
 information.	

5. Run	
 the	
 script	
 for	
 1000	
 connections	
 simultaneously.	

	

Known	
 uses	
 	
 Common	
 Criteria	
 SFRs:	
 FIA_AFL.1	
 and	
 FIA_UAU.1	

Discussion	
 The	
 evaluation	
 should	
 be	
 performed	
 online.	

Pitfalls:	
 write	
 a	
 script	
 capturing	
 and	
 replaying	
 HTTP/TCP	
 messages	
 as	
 well	
 as	
 searching	

for	
 manipulatable	
 fields.	
 Some	
 knowledge	
 on	
 the	
 system	
 under	
 test	
 are	
 necessary.	

Related	
 patterns	
 - Test	
 for	
 Common	
 Usernames	
 and	
 Passwords	

- Attacking	
 the	
 Authentication	
 Nonce	

- Logging	
 in	
 more	
 than	
 X	
 time	

- Obtain	
 a	
 Plethora	
 of	
 Connections	

References	
 CWE-­‐307[13],	
 CWE-­‐798[13],	
 CWE-­‐770[13]and	
 CWE-­‐327[13]	

Initial Security Test Patterns Catalogue

Deliverable ID: D3.WP4.T1

Page : 27 of 34

Version: 1.0
Date : 30.05.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

	

4.2.3 Testing the safe storage of authentication credentials

Pattern	
 name	
 Testing	
 the	
 safe	
 storage	
 of	
 authentication	
 credentials	

Context	
 Testing	
 Approach(es):	
 detection	

Problem/Goal	
 This	
 pattern	
 addresses	
 how	
 to	
 check	
 that	
 the	
 system	
 store	
 in	
 a	
 safe	
 way	
 the	
 user	

authentication	
 information.	

Relevant	
 for	
 user	
 authentication	
 management.	

Solution	
 	
 Test	
 Procedure	
 Template	

1. Set	
 up	
 a	
 connection	
 to	
 monitor	
 all	
 HTTP	
 or	
 TCP	
 traffic	
 flowing	
 to	
 the	
 server	
 or	

from	
 the	
 server.	

2. Authenticate	
 to	
 the	
 system	
 as	
 a	
 registered	
 user.	

3. If	
 the	
 system	
 is	
 web-­‐based,	
 examine	
 all	
 cookies	
 related	
 to	
 the	
 system	
 under	

test	
 (e.g.	
 by	
 looking	
 up	
 its	
 domain	
 name).	

4. Log	
 out.	

5. Access	
 the	
 system's	
 database	
 directly	
 through	
 a	
 database	
 management	
 tool.	

6. Find	
 and	
 view	
 the	
 table	
 containing	
 user	
 authentication	
 information	
 (typically	

named	
 similar	
 to	
 “users”	
 or	
 “userdata”).	

	

Known	
 uses	
 	
 Common	
 Criteria	
 SFRs:	
 FIA_UAU.1,	
 FIA_UID.1,	
 FIA_UID.2	

Discussion	
 The	
 evaluation	
 can	
 be	
 performed	
 online	
 or	
 offline	
 if	
 the	
 testing	
 architecture	
 is	
 well	

defined.	
 The	
 information	
 will	
 be	
 analyzed	
 through	
 the	
 cookies	
 and	
 the	
 userdata.	

An	
 efficient	
 database	
 management	
 tool	
 must	
 be	
 used	
 to	
 check	
 the	
 user	

authentication	
 information.	

Related	
 patterns	
 	

References	
 CWE-­‐311[13]	

Initial Security Test Patterns Catalogue

Deliverable ID: D3.WP4.T1

Page : 28 of 34

Version: 1.0
Date : 30.05.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

	

4.2.4 Open Redirect

Pattern name Redirect header manipulation

Context Testing Approach(es): design

Problem/Goal This pattern addresses how to check that the system handles correctly the
users redirection after authentication.
Relevant for URL parameters rejection.

Solution Test Procedure Template
1. Set up to record HTTP traffic.
2. Authenticate as a registered user
3. Browse to some pages other than the authentication page or

homepage.
4. Observe the parameters sent to the web application in the URL.
5. Record any parameters that seem to indicate that the system is

controlling where the user is to be redirected to after authentication.
6. Log out.
7. Manipulate the parameters recorded above to point to a dangerous or

untrusted URL.
8. Log back in.

Known uses Common CCHIT Criteria: AM 09.06

Criteria SFR: FTP_ITI.1
Discussion The evaluation can be performed offline after ‘randomly’ manipulating and

monitoring the system.
Some parameters have to be carefully defined before their modifications.

Related patterns

References CWE-601[13]

Initial Security Test Patterns Catalogue

Deliverable ID: D3.WP4.T1

Page : 29 of 34

Version: 1.0
Date : 30.05.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

	

4.2.5 Uploading a malicious file

Pattern	
 name	
 Malicious	
 file	
 upload	

Context	
 Testing	
 Approach(es):	
 test	
 data	

Problem/Goal	
 This	
 pattern	
 addresses	
 how	
 to	
 check	
 that	
 the	
 system	
 should	
 reject	
 the	
 file	
 upon	

selection	
 or	
 should	
 not	
 allow	
 it	
 to	
 be	
 stored.	

Relevant	
 for	
 controlling	
 stored	
 or	
 uploaded	
 files.	

Solution	
 	
 Test	
 Procedure	
 Template	

1. Authenticate	
 as	
 a	
 registered	
 user.	

2. Open	
 the	
 user	
 interface	
 for	
 action	
 object.	

3. Select	
 and	
 upload	
 a	
 malicious	
 file	
 in	
 place	
 of	
 object.	

4. View	
 or	
 download	
 the	
 malicious	
 file.	

	

Known	
 uses	
 	
 Common	
 Criteria	
 SFRs:	
 FDP_SDI.1,	
 FDP_SDI.2	
 and	
 FDP_ITC.1	

	

Discussion	
 The	
 evaluation	
 can	
 be	
 performed	
 offline	
 after	
 uploading	
 a	
 malicious	
 file.	

The	
 system	
 must	
 provide	
 the	
 ability	
 to	
 save	
 scanned	
 documents	
 as	
 images.	

Related	
 patterns	
 - Malicious	
 file	

References	
 CWE-­‐434[13]	

Initial Security Test Patterns Catalogue

Deliverable ID: D3.WP4.T1

Page : 30 of 34

Version: 1.0
Date : 30.05.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

	

4.2.6 Searching for documented passwords

Pattern	
 name	
 Search	
 for	
 documented	
 passwords	

Context	
 Testing	
 Approach(es):	
 detection,	
 test	
 data	

Problem/Goal	
 This	
 pattern	
 addresses	
 how	
 to	
 check	
 that	
 the	
 system	
 should	
 not	
 list	
 any	
 default	

passwords	
 or	
 usernames	
 that	
 are	
 hard-­‐coded	
 into	
 the	
 product.	

Solution	
 	
 Test	
 Procedure	
 Template	

1. Search	
 the	
 system's	
 documentation.	

2. Look	
 at	
 the	
 HTML	
 or	
 any	
 marked-­‐up	
 text	
 that	
 is	
 included	
 with	
 the	
 system	
 by	

default.	

	

Known	
 uses	
 	
 Common	
 Criteria	
 SFRs:	
 FPT_ITI.1	
 and	
 FPT_ITC.1	

Discussion	
 The	
 evaluation	
 is	
 performed	
 offline.	

A	
 pitfall	
 is	
 the	
 identification	
 of	
 the	
 elements	
 we	
 are	
 looking	
 for	
 (users	
 information	
 or	

password).	

Related	
 patterns	
 	

References	
 CWE-­‐798[13]	

Initial Security Test Patterns Catalogue

Deliverable ID: D3.WP4.T1

Page : 31 of 34

Version: 1.0
Date : 30.05.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

	

4.2.7 Impersonating an external server

Pattern	
 name	
 Impersonating	
 trusted	
 external	
 resources	

Context	
 Testing	
 Approach(es):	
 design,	
 data	

Problem/Goal	
 This	
 pattern	
 addresses	
 how	
 to	
 check	
 that	
 the	
 system	
 refuses	
 (or	
 behave	
 as	
 such)	
 to	

connect	
 an	
 impersonated	
 server.	
 Indeed,	
 by	
 DNS	
 spoofing	
 or	
 DNS	
 entry	
 modifications,	

the	
 authentic	
 external	
 server	
 may	
 be	
 replaced.	

Relevant	
 for	
 checking	
 trusted	
 path/channels.	

Solution	
 	
 Test	
 Procedure	
 Template	

1. Set	
 up	
 a	
 connection	
 to	
 monitor	
 all	
 HTTP	
 or	
 TCP	
 traffic	
 flowing	
 to	
 the	
 server	
 or	

from	
 the	
 server.	

2. Authenticate	
 as	
 a	
 registered	
 user.	

3. Open	
 the	
 user	
 interface	
 to	
 action	
 an	
 object.	

4. Identify	
 any	
 request	
 that	
 was	
 sent	
 to	
 an	
 external	
 server	
 and	
 record	
 it.	

5. Impersonate	
 the	
 external	
 server,	
 either	
 by	
 changing	
 the	
 settings	
 of	
 the	

system	
 to	
 point	
 to	
 that	
 server	
 or	
 by	
 DNS	
 spoofing	
 the	
 external	
 server	
 and	

replacing	
 that	
 DNS	
 entry	
 with	
 the	
 impersonated	
 server.	

6. Construct	
 a	
 response	
 from	
 the	
 impersonated	
 server	
 that	
 performs	
 the	
 same	

functionality	
 as	
 the	
 authentic	
 external	
 server.	

7. Open	
 the	
 user	
 interface	
 to	
 action	
 an	
 object	
 again.	

8. Log	
 out.	

	

Known	
 uses	
 	
 Common	
 Criteria	
 SFRs:	
 	
 FTP_ITC.1	
 and	
 FTP_TRP.1	

Discussion	
 The	
 evaluation	
 is	
 performed	
 online.	

A	
 pitfall	
 could	
 be	
 the	
 response	
 to	
 be	
 built	
 and	
 sent	
 by	
 the	
 tester	

Related	
 patterns	
 - DNS	
 Spoofing	
 an	
 Update	
 Site	

- Pointing	
 to	
 an	
 Untrusted	
 Update	
 Site	

- Spoofing	
 Functionality	
 Provided	
 in	
 Untrusted	
 Sphere	

References	
 CWE-­‐494[13]	
 and	
 CWE-­‐829[13]	

Initial Security Test Patterns Catalogue

Deliverable ID: D3.WP4.T1

Page : 32 of 34

Version: 1.0
Date : 30.05.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

	

4.2.8 Accessing resources without required credentials

Pattern	
 name	
 Exposing	
 functionality	
 requiring	
 authorization	

Context	
 Testing	
 Approach(es):	
 design	

Problem/Goal	
 This	
 pattern	
 addresses	
 how	
 to	
 check	
 that	
 the	
 system	
 disallows	
 a	
 user	
 to	
 action	
 an	

object	
 if	
 she	
 has	
 not	
 the	
 proper	
 credentials.	

	

Solution	
 Test	
 Procedure	
 Template	

1. If	
 access	
 to	
 action	
 an	
 object	
 requires	
 authentication,	
 authenticate	
 as	
 a	

registered	
 user.	

2. Open	
 the	
 user	
 interface,	
 either	
 inside	
 or	
 outside	
 of	
 the	
 main	
 application,	

for	
 actioning	
 the	
 object.	

3. Record	
 the	
 series	
 of	
 mouse	
 clicks,	
 GUI	
 interactions,	
 or	
 URL	
 sequences	

required	
 to	
 get	
 to	
 this	
 screen.	

4. Log	
 out	
 and/or	
 exit	
 this	
 screen.	

5. Attempt	
 to	
 repeat	
 the	
 series	
 of	
 steps	
 recorded	
 above.	

	

Known	
 uses	
 	
 Common	
 Criteria	
 SFRs:	
 	
 	
 FDP_ACC.1,	
 FDP_ACC.2	
 and	
 FDP_ACF.1	

Discussion	
 The	
 evaluation	
 is	
 performed	
 online	
 while	
 an	
 analysis	
 of	
 the	
 performed	
 actions	
 can	
 be	

made	
 offline.	

Some	
 actions	
 could	
 be	
 difficult	
 to	
 be	
 automatized	
 (forms	
 to	
 enter,	
 specific	
 values	
 to	

provide	
 through	
 a	
 database	
 process).	
 It	
 will	
 depend	
 on	
 the	
 design	
 of	
 the	
 user	

interface.	

Related	
 patterns	
 - Exposing	
 Critical	
 Functionality	

- Force	
 Exposure	
 of	
 Function	
 Requiring	
 Authorization	

References	
 CWE-­‐306[13]	
 and	
 CWE-­‐862[13]	

Initial Security Test Patterns Catalogue

Deliverable ID: D3.WP4.T1

Page : 33 of 34

Version: 1.0
Date : 30.05.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

	

4.2.9 Ensuring confidentiality of sensitive information

Pattern	
 name	
 Sensitive	
 information	
 confidentiality	

Context	
 Testing	
 Approach(es):	
 architectural	

Problem/Goal	
 This	
 pattern	
 addresses	
 how	
 to	
 check	
 that	
 the	
 system	
 use	
 a	
 known	
 safe	
 encryption	

protocol.	

Relevant	
 to	
 test	
 if	
 any	
 sensitive	
 or	
 personal	
 information	
 contained	
 within	
 an	
 object	
 is	

only	
 accessible	
 to	
 the	
 user	
 who	
 actioned	
 it.	

	

Solution	
 Test	
 Procedure	
 Template	

1. Authenticate	
 as	
 a	
 registered	
 user.	

2. Open	
 the	
 user	
 interface	
 for	
 actioning	
 an	
 object.	

3. If	
 necessary,	
 open,	
 view,	
 or	
 otherwise	
 access	
 the	
 actioned	
 object.	

4. Log	
 out.	

	

Known	
 uses	
 	
 Common	
 Criteria	
 SFRs:	
 	
 	
 FCS_COP.1	

Discussion	
 The	
 evaluation	
 is	
 performed	
 either	
 online	
 or	
 offline.	

Some	
 actions	
 on	
 the	
 objects	
 could	
 provide	
 different	
 behaviors	
 that	
 could	
 eventually	

relate	
 on	
 other	
 test	
 patterns.	

Finally	
 some	
 expected	
 results	
 could	
 be	
 that	
 (i)	
 the	
 connection	
 to	
 the	
 server	
 was	
 made	

using	
 a	
 known	
 safe	
 encryption	
 protocol	
 (e.g.	
 HTTP	
 over	
 SSL,	
 or	
 an	
 encrypted	
 TCP	

connection),	
 and	
 (ii)	
 the	
 manipulated	
 object	
 is	
 encrypted	
 with	
 a	
 safe	
 encryption	

protocol,	
 password-­‐protected,	
 or	
 both.	

Related	
 patterns	
 - Testing	
 the	
 safe	
 transmission	
 and	
 storage	
 of	
 sensitive	
 personal	
 information	

- Testing	
 the	
 safe	
 transmission	
 of	
 sensitive	
 data	
 to	
 an	
 outside	
 source	

- Force	
 the	
 Export	
 of	
 Sensitive	
 Information	

References	
 CWE-­‐311[13],	
 CWE-­‐212[13]	

5. SUMMARY OF TEST PATTERNS CATALOGUE
This deliverable has introduced the concept of security test patterns, as defined by the DIAMONDS project
and has provided an initial catalogue of patterns addressing several attack patterns and known
vulnerabilities likely to affect security of information systems. A total of 17 patterns have been presented, all
based on a common template specifically designed for security testing and aligning to good practices of the
pattern community.
Future work in DIAMONDS will consist in consolidating these patterns and in enriching the catalogue with
new test patterns identified in the case studies running in the project.

Initial Security Test Patterns Catalogue

Deliverable ID: D3.WP4.T1

Page : 34 of 34

Version: 1.0
Date : 30.05.2012

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

REFERENCES
[1] C. Alexander; A Pattern Language: Town, Buildings, Construction; Oxford, UK: Oxford University Press,

1977.

[2] R. Binder. Testing Object Oriented Systems: Models, Patterns and Tools. Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA, 1999.

[3] A. Vouffo Feudjio, I. Schieferdecker; Test patterns with TTCN-3; Proceedings from the International
Workshop on Formal Approaches to Testing of Software - FATES/RV , pp. 170-179, 2004

[4] A. Vouffo Feudjio, I. Schieferdecker: A Pattern Language of Black-Box Test Design for Reactive Software
Systems. EuroPLoP 2009

[5] A. Vouffo Feudjio, A Methodology For Pattern-Oriented Model-Driven Testing of Reactive Software
Systems, PhD Thesis, Feb. 2011,
http://opus.kobv.de/tuberlin/volltexte/2011/3103/pdf/vouffofeudjio_alaingeorges.pdf

[6] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented Software
Architecture, A System Of Patterns, Volume 1. Wiley Series in Software Design Patterns, 2001.

[7] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann and P. Sommerlad, Security
Patterns – Integrating Security and Systems Engineering, Wiley Series in Software Design Patterns,
2006.

[8] ITSEC: Information Technology Security Evaluation Criteria, Version 1.2 June 1991.
http://www.ssi.gouv.fr/site_documents/ITSEC/ITSEC-uk.pdf

[9] ITSEC, http://en.wikipedia.org/wiki/ITSEC

[10] Mitre, “Common Attack Pattern Enumeration and Classification”, http://capec.mitre.org/index.html.

[11] Mitre, “Common Vulnerabilities and Exposures ” http://cve.mitre.org/

[12] Mitre, “Common Weakness Risk Analysis Framework (CWRAF™)”, Mitre, http://cwe.mitre.org/cwraf/

[13] Mitre, “Common Weakness Enumeration” http://cwe.mitre.org

[14] OWASP, “OWASP Testing Guide v3”,
http://www.owasp.org/images/5/56/OWASP_Testing_Guide_v3.pdf

[15] Realsearch research group, “Security Test Patterns”, http://securitytestpatterns.org/doku.php

[16] http://www.cchit.org/sites/all/files/CCHIT%20Certified%202011%20Ambulatory%20EHR%20Criteria
%2020110517.pdf, May 2011.

[17] Common Criteria for Information Technology Security Evaluation, Version 3.1, Part 1: Introduction
and general model, Revision 3, July 2009,

[18] Common Criteria for Information Technology Security Evaluation, Version 3.1, Part 2: Security
functional components, Revision 3, July 2009,

[19] Common Criteria for Information Technology Security Evaluation, Version 3.1, Part 3: Security
assurance components, Revision 3, July 2009.

[20] S. Christey (Ed.), B. Martin, M. Brown, A. Paller, D. Kirby; 2011 CWE/SANS Top 25 Most Dangerous
Software Errors; http://cwe.mitre.org/top25/; Document version: 1.0.1; June 27, 2011

[21] CAPEC 94: Man in the Middle Attack; http://capec.mitre.org/data/definitions/94.html

